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Abstract

Given a Poisson (or more generally Dirac) manifold P , there are two approaches to its geometric quantization: one involves a
circle bundle Q over P endowed with a Jacobi (or Jacobi–Dirac) structure; the other one involves a circle bundle with a (pre)contact
groupoid structure over the (pre)symplectic groupoid of P . We study the relation between these two prequantization spaces. We
show that the circle bundle over the (pre)symplectic groupoid of P is obtained from the Lie groupoid of Q via an S1 reduction that
preserves both the Lie groupoid and the geometric structures.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The geometric quantization of symplectic manifolds is a classical problem that has been much studied over the
years. The first step is to find a prequantization. A symplectic manifold (P, ω) is prequantizable iff [ω] is an integer
cohomology class. Finding a prequantization means finding a faithful representation of the Lie algebra of functions on
(P, ω) (endowed with the Poisson bracket) mapping the function 1 to a multiple of the identity. Such a representation
space consists usually of sections of a line bundle over P [14], or equivalently of S1-antiequivariant complex functions
on the total space Q of the corresponding circle bundle [18].

For more general kinds of geometric structure on P , such as Poisson or even more generally Dirac [5] structures,
there are two approaches for extending the geometric quantization of symplectic manifolds, at least as far as
prequantization is concerned:

• To build a circle bundle Q over P compatible with the Poisson (resp. Dirac) structure on P (see Souriau [18] for
the symplectic case, [12,20,4] for the Poisson case, and [25] for the Dirac case).

• To build the symplectic (resp. presymplectic) groupoid of P first and construct a circle bundle over the
groupoid [24], with the hope of quantizing Poisson manifolds “all at once” as proposed by Weinstein [23].

We call Q as above a “prequantization space” for P because, when P is prequantizable, out of the Hamiltonian
vector fields on Q one can construct a representation of the admissible functions on P , which form a Poisson algebra,

∗ Corresponding author.
E-mail addresses: zambon@math.unizh.ch (M. Zambon), zhu@math.ethz.ch, zhu@ujfgrenoble.fr (C. Zhu).

0393-0440/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2007.08.003

http://www.elsevier.com/locate/jgp
mailto:zambon@math.unizh.ch
mailto:zhu@math.ethz.ch
mailto:zhu@ujfgrenoble.fr
http://dx.doi.org/10.1016/j.geomphys.2007.08.003


M. Zambon, C. Zhu / Journal of Geometry and Physics 57 (2007) 2372–2397 2373

on the space of S1 antiequivariant functions on Q (see Prop. 5.1 of [25]). Usually however this representation is not
faithful.

Since the (pre)symplectic groupoid Γs(P) of P is the canonical global object associated with P , the prequantization
circle bundle over Γs(P) can be considered an “alternative prequantization space” for P . Furthermore, since there is
a submersive Poisson (Dirac) map Γs(P) → P , the admissible functions on P can be viewed as a Poisson subalgebra
of the functions on Γs(P), which can be prequantized whenever Γs(P) is a prequantizable (pre)symplectic manifold.
The resulting representation is faithful but the representation space is unsuitable because it is too large.

In this paper we will not be interested in representations but only in the geometry that arises from the
prequantization spaces associated with a given a Dirac manifold (P, L). Indeed our main aim is to study the relation
between the two prequantization spaces above, which we will explain in Theorems 4.2, 4.9 and 4.11.

We start by searching for a more transparent description of the geometric structures on the circle bundles Q, which
are Jacobi–Dirac structures [25] L̄ . This will be done in Section 2, both in terms of subbundles and in terms of brackets
of functions, paying particular attention to the Lie algebroid structure that L̄ carries.

Secondly, in Section 3, we relate the Lie algebroid L̄ associated with Q to the Lie algebroid of the prequantization of
Γs(P). We do this using S1 precontact reduction, paralleling one of the motivating examples of symplectic reduction:
T ∗M/ /0 G = T ∗(M/G). This gives us evidence at the infinitesimal level for the relation between the Lie groupoid
associated with Q and the prequantization of Γs(P). The latter relation between Lie groupoids will be described in
Section 4, again as an S1 precontact reduction. We provide a direct proof in the Poisson case. In the general Dirac case,
the proof is done by integrating the results of Section 3 to the level of Lie groupoids with the help of Lie algebroid path
spaces. As a by-product, we obtain the prequantization condition for Γs(P) in terms of period groups on P . Then we
show that this condition is automatically satisfied when the Dirac manifold P admits a prequantization circle bundle
Q over it. This generalizes some of the results in [8,2].

This paper ends with three appendices. Appendix A provides a useful tool for performing computations on
precontact groupoids, and Appendix B describes explicitly the Lie groupoid of a locally conformal symplectic
manifold. In Appendix C we apply a construction of Vorobjev to the setting of Section 2.

Notation: Throughout the paper, unless otherwise specified, (P, L) will always denote a Dirac manifold, π : Q
→ P will be a circle bundle and L̄ will be a Jacobi–Dirac structure on Q. By Γs and Γc we will denote presymplectic
and precontact groupoids respectively, and we adopt the convention that the source map induces the (Dirac and
Jacobi–Dirac respectively) structures on the bases of the groupoids. By “precontact structure” on a manifold we
will just mean a 1-form on the manifold.

2. Constructing the prequantization of P

The aim of this section is to describe in an intrinsic way the geometric structures (Jacobi–Dirac structures L̄) on
the circle bundles Q induced by prequantizable Dirac manifolds (P, L), paying particular attention to the associated
Lie algebroid structures. In Section 2.1 we will recall the non-intrinsic construction of L̄ given in [25]. In Section 2.2
we will describe L̄ intrinsically in terms of subbundles and in Section 2.3 by specifying the bracket on functions that
it induces.

We first recall a few definitions from [25].

Definition 2.1. A Dirac structure on a manifold P is a subbundle of T P ⊕ T ∗ P which is maximal isotropic w.r.t. the
symmetric pairing 〈X1 ⊕ ξ1, X2 ⊕ ξ2〉+ =

1
2 (iX2ξ1 + iX1ξ2) and whose sections are closed under the Courant bracket

[X1 ⊕ ξ1, X2 ⊕ ξ2]Cou =

(
[X1, X2] ⊕ LX1ξ2 − LX2ξ1 +

1
2

d(iX2ξ1 − iX1ξ2)

)
.

If ω is a 2-form on P then its graph {X ⊕ ω(X, •) : X ∈ T P} is a Dirac structure iff dω = 0. Given a bivector Λ on
P , the graph {Λ(•, ξ)⊕ ξ : ξ ∈ T ∗ P} is a Dirac structure iff Λ is a Poisson bivector. A Dirac structure L on P gives
rise to (and is encoded by) a singular foliation on P , whose leaves are endowed with presymplectic forms.

A function f on a Dirac manifold (P, L) is admissible if there exists a smooth vector field X f such that X f ⊕ d f
is a section of L . A vector field X f as above is called a Hamiltonian vector field of f . The set of admissible functions,
with the bracket { f, g} = Xg · f , forms a Lie (indeed a Poisson) algebra. Given a map π : Q → P and a Dirac
structure L on Q, for every q ∈ Q one can define the subspace (π?L)π(q) := {π∗ X ⊕ µ : X ⊕ π∗µ ∈ Lq} of
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Tπ(q)P ⊕ T ∗

π(q)P . Whenever π?L is a well defined and smooth subbundle of T P ⊕ T ∗ P it is automatically a Dirac
structure on P . In this case π : (Q, L) → (P, π?L) is said to be a forward Dirac map. Similarly, if P is endowed
with some Dirac structure L , (π?L)(q) := {Y ⊕ π∗ξ : π∗Y ⊕ ξ ∈ Lπ(q)} (when a smooth subbundle) defines a Dirac
structure on Q, and π : (Q, π?L) → (P, L) is said to be a backward Dirac map.

Definition 2.2. A Jacobi–Dirac structure on Q is defined as a subbundle of E1(Q) := (T Q ×R)⊕ (T ∗Q ×R) which
is maximal isotropic w.r.t. the symmetric pairing

〈(X1, f1)⊕ (ξ1, g1), (X2, f2)⊕ (ξ2, g2)〉+ =
1
2
(iX2ξ1 + iX1ξ2 + g2 f1 + g1 f2)

and whose space of sections is closed under the extended Courant bracket on E1(Q) given by

[(X1, f1)⊕ (ξ1, g1), (X2, f2)⊕ (ξ2, g2)]E1(Q) = ([X1, X2], X1 · f2 − X2 · f1)

⊕

(
LX1ξ2 − LX2ξ1 +

1
2

d(iX2ξ1 − iX1ξ2)+ f1ξ2 − f2ξ1 +
1
2
(g2d f1 − g1d f2 − f1dg2 + f2dg1),

X1 · g2 − X2 · g1 +
1
2
(iX2ξ1 − iX1ξ2 − f2g1 + f1g2)

)
. (1)

We mention two examples. Given any 1-form (precontact structure) σ on Q, Graph
(

dσ σ

−σ 0

)
⊂ E1(Q) is a

Jacobi–Dirac structure. Given a bivector field Λ and a vector field E on Q and with the notation Λ̃ξ := Λ(•, ξ),
Graph

(
Λ̃ −E
E 0

)
⊂ E1(Q) is a Jacobi–Dirac structure iff (Λ, E) is a Jacobi structure, i.e. by definition if it satisfies the

Schouten bracket conditions [E,Λ] = 0 and [Λ,Λ] = 2E ∧ Λ. Further to a Dirac structure L ⊂ T Q ⊕ T ∗Q there is
an associated Jacobi–Dirac structure

Lc
:= {(X, 0)⊕ (ξ, g) : (X, ξ) ∈ L , g ∈ R} ⊂ E1(Q).

A function f on a Jacobi–Dirac manifold (Q, L̄) is admissible if there exists a smooth vector field X f and a smooth
function ϕ f such that (X f , ϕ f )⊕ (d f, f ) is a section of L̄ , and X f is called a Hamiltonian vector field of f . The set
of admissible functions, denoted by C∞

adm(Q), together with the bracket { f, g} = Xg · f + f ϕg forms a Lie algebra.
There is a notion of forward and backward Jacobi–Dirac maps analogous to that for Dirac structures.

Definition 2.3. A Lie algebroid over a manifold P is a vector bundle A over P together with a Lie bracket [·, ·] on
its space of sections and a bundle map ρ : A → T P (the anchor) such that the Leibniz rule [s1, f s2] = ρs1( f ) · s2
+ f · [s1, s2] is satisfied for all sections s1, s2 of A and functions f on P .

One can think of Lie algebroids as generalizations of tangent bundles. With every Lie algebroid A one associates
cochains (the sections of the exterior algebra of A∗) and a certain differential dA; the associated Lie algebroid
cohomology H•

A(P) can be thought of as a generalization of de Rham cohomology. One also defines an A-connection
on a vector bundle K → P as map Γ (A)× Γ (K ) → Γ (K ) satisfying the usual properties of a covariant derivative.

A Dirac structure L ⊂ T P ⊕ T ∗ P is automatically a Lie algebroid over P , with bracket on sections of L given by
the Courant bracket and anchor the projection ρT P : L → T P . Similarly, a Jacobi–Dirac structure L̄ ⊂ E1(Q), with
the extended Courant bracket and projection onto the first factor as anchor, is a Lie algebroid.

2.1. A non-instrinsic description of L̄

We now recall the prequantization construction of [25], which associates with a Dirac manifold a circle bundle Q
with a Jacobi–Dirac structure.

Let (P, L) be a Dirac structure. We saw above that L is a Lie algebroid with the restricted Courant bracket and
anchor ρT P : L → T P (which is just the projection onto the tangent component). This anchor gives a Lie algebra
homomorphism from Γ (L) to Γ (T P) endowed with the Lie bracket of vector fields. The pullback by the anchor
therefore induces a map ρ∗

T P : Ω•

dR(P,R) → Ω•

L(P), the sections of the exterior algebra of L∗, which descends to
a map from de Rham cohomology to the Lie algebroid cohomology H•

L(P) of L . There is a distinguished class in



M. Zambon, C. Zhu / Journal of Geometry and Physics 57 (2007) 2372–2397 2375

H2
L(P): on T P ⊕ T ∗ P there is an antisymmetric pairing given by

〈X1 ⊕ ξ1, X2 ⊕ ξ2〉− =
1
2
(iX2ξ1 − iX1ξ2). (2)

Its restriction Υ to L satisfies dLΥ = 0. The prequantization condition (which for Poisson manifolds was first
formulated by Vaisman) is

[Υ ] = ρ∗

T P [Ω ] (3)

for some integer de Rham 2-class [Ω ]. (3) can be equivalently phrased as

ρ∗

T PΩ = Υ + dLβ, (4)

where Ω is a closed integral 2-form and β a 1-cochain for the Lie algebroid L , i.e. a section of L∗. Let π : Q → P be
an S1-bundle with connection form σ having curvature Ω ; denote by E the infinitesimal generator of the S1-action. In
Theorem 4.1 of [25] Q was endowed with the following geometric structure, described in terms of the triple (Q, σ, β):

Theorem 2.4. The subbundle L̄ of E1(Q) given by the direct sum of

{(X H
+ 〈X ⊕ ξ, β〉E, 0)⊕ (π∗ξ, 0) : X ⊕ ξ ∈ L}

and the line bundles generated by (−E, 0)⊕ (0, 1) and (−AH , 1)⊕ (σ − π∗α, 0) is a Jacobi–Dirac structure on Q.
Here, A ⊕ α is an isotropic section of T P ⊕ T ∗ P satisfying β = 2〈A ⊕ α, ·〉+|L . Such a section always exists, and
the subbundle above is independent of the choice of A ⊕ α.

We call (Q, L̄) a “prequantization space” for (P, L) because the assignment g 7→ {π∗g, •} = −Xπ∗g is a
representation of C∞

adm(P) on the space of S1 antiequivariant functions on Q [25].
Triples (Q, σ, β) as above define a Hermitian L-connection with curvature 2π iΥ on the line bundle K

corresponding to Q, via the formula

D• = ∇ρT P• − 2π i〈•, β〉 (5)

where ∇ is the covariant connection corresponding to σ (Lemma 6.2 in [25]). We have

Proposition 2.5. For a prequantizable Dirac manifold (P, L), the Jacobi–Dirac structure L̄ constructed in
Theorem 2.4 on Q is determined by a choice of Hermitian L-connection on K with curvature 2π iΥ .

Proof. We described above how the triples (Q, σ, β) used to construct L̄ give rise to Hermitian L-connections with
curvature 2π iΥ . Conversely, all Hermitian L-connections with curvature 2π iΥ arise from triples (Q, σ, β) as above
(Proposition 6.1 in [25]). A short computation shows that the triples that define the same L-connection as (Q, σ, β)
are exactly those of the form (Q, σ + π∗γ, β + ρ∗

T Pγ ) for some 1-form γ on P , and that these triples all define the
same Jacobi Dirac structure L̄ (Lemma 4.1 in [25]; see also the last comment in Sect. 6.1 there). �

In the next two subsections we will construct L̄ directly from the L-connection. We end this subsection by
commenting on how the various Jacobi–Dirac structures L̄ defined above are related.

Remark 2.6. Two L-connections on K are gauge equivalent if the differ by dLφ for some function φ : P → S1.
Gauge-equivalent L-connections D on K with curvature 2π iΥ give rise to isomorphic Jacobi–Dirac structures:
denoting by Φ the bundle automorphism of Q given by q 7→ q · π∗φ, using the proof of Proposition 4.1 in [25] one
can show that if D2 = D1 − 2π idLφ then (Φ∗, Id)⊕ ((Φ−1)∗, Id) is an isomorphism from the Jacobi–Dirac structure
induced by D1 to the one induced by D2. Alternatively one can check directly that for the bracket of functions, which
by Remark 2.17 determine the Jacobi–Dirac structures, Φ∗

{·, ·}D2 = {Φ∗
·,Φ∗

·}D1 . The gauge-equivalence classes of
L-connections with curvature 2π iΥ are a principal homogeneous space for H1

L(P,U (1)) (see the proof of Prop. 6.1
in [25]).

Remark 2.7. It is easy to see that the prequantization space Q of a prequantizable Dirac manifold (P, L) can be
endowed with various non-isomorphic Jacobi–Dirac structures L̄ . Even more is true: (Q, L̄1) and (Q, L̄2) will
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usually not even be Morita equivalent, for any reasonable notion of Morita equivalence of Jacobi–Dirac manifold
(or of their respective precontact groupoids). Indeed for P = R with the zero Poisson structure, choosing (Q, σ, β)
= (S1

× R, dθ, x∂x ) as in Example 4.13 one obtains a Jacobi structure on Q with three leaves, whereas choosing
(S1

×R, dθ, 0) one obtains a Jacobi structure with uncountably many leaves (namely all S1
×{q}). On the other hand,

one of the general properties of Morita equivalence is to induce a bijection on the space of leaves.

2.2. An intrinsic characterization of L̄

In this subsection we fix an L-connection D on the line bundle K → P with curvature 2π iΥ and construct the Lie
algebroid L̄ from L and D directly. (In Proposition 3.4 we will perform the inverse construction, i.e. we will recover
L from L̄ .) An alternative approach that works in particular cases is presented in Appendix C.

We begin with a useful lemma concerning flat Lie algebroid connections (compare also to Lemma 6.1 in [25]).

Lemma 2.8. Let E be any Lie algebroid over a manifold M, K a line bundle over M, and D a Hermitian
E-connection on K . Consider the central extension E ⊕η R, where 2π iη equals the curvature of D; then D̃(Y,g) = DY
+ 2π ig defines an E ⊕η R-connection on K which is moreover flat.

Proof. One checks easily that D̃ is indeed a Lie algebroid connection. Recall that the bracket on E ⊕η R is defined as
[(a1, f1), (a2, f2)]E ⊕η R = ([e1, e2]E , ρ(a1) f2 − ρ(a2) f1 + η(a1, a2)), where ρ is the anchor, and that the curvature
of D̃ is

RD̃(e1, e2)s = D̃e1 D̃e2s − D̃e2 D̃e1s − D̃[e1,e2]s

for elements ei of E ⊕η R and s of K . The flatness of D̃ follows by a straightforward calculation. �

We will use of this construction, which is just a way of making explicit the structure of a transformation algebroid
(see Remark 2.10 below).

Lemma 2.9. Let A be any Lie algebroid over a manifold P, πQ : Q → P a principal SO(n)-bundle, πK : K → P
the vector bundle associated with the standard representation of SO(n) on Rn , and D̃ a flat A-connection on K
preserving its fiberwise metric. The A-connection induces a bundle map hQ : π∗

Q A → T Q (the “horizontal lift”) that
can be used to extend, by the Leibniz rule, the obvious bracket on SO(n)-invariant sections of π∗

Q A to all sections of
π∗

Q A. The vector bundle π∗

Q A, with this bracket and hQ as an anchor, is a Lie algebroid over Q.

Proof. We first recall some facts from Section 2.5 in [11]. The A-connection D̃ on the vector bundle K defines a map
(the “horizontal lift”) hK : π∗

K A → T K covering the anchor A → T P by taking parallel translations of elements of K
along A-paths. See Section 4.2 for the definition of A-paths. Explicitly, fix an A-path a(t) with base path γ (t), a point
x ∈ π−1

K (γ (0)) and let γ̃ (t) be the unique path in K (over γ (t)) starting at x with D̃a(t)γ̃ (t) = 0. We can always write
D̃ = ∇ρ• − β̃ where ∇ is a metric T P-connection on A and β̃ ∈ Γ (A∗)⊗ so(K ); then ∇ρa(t)γ̃ (t) = 〈β̃, a(t)〉γ̃ (t).
Since the left hand side is the projection of the velocity of γ̃ (t) along the Ehresmann distribution H corresponding to
∇, we obtain d

dt γ̃ (t) = ( d
dt γ (t))

H
+ 〈β̃, a(t)〉γ̃ (t), so that

hK (a(0), x) :=
d
dt

∣∣∣∣
t=0
γ̃ (t) = ρ(a(0))H

+ 〈β̃, a(0)〉x . (6)

Of course hK does not depend on ∇ or β̃ directly, but just on D̃. By our assumptions hK is induced by a “horizontal
lift” for the principal bundle Q, i.e. by a SO(n)-equivariant map hQ : π∗

Q A → T Q covering the anchor of A. Since
our A-connection D̃ is flat, the map that associates with a section s of A the vector field hQ(π

∗

Qs) on Q is a Lie
algebra homomorphism.

On sections π∗

Qs1, π∗

Qs2 of π∗

Q A which are pullbacks of sections of A we define the bracket to be π∗

Q[s1, s2], and
we extend it to all sections of π∗

Q A by using hQ as an anchor and forcing the Leibniz rule. We have to show that the
resulting bracket satisfies the Jacobi identity. Given sections si of A and a function f on Q one can show that the
Jacobiator [[π∗

Qs1, f ·π∗

Qs2], π
∗

Qs3]+ c.p. = 0 by using the facts that the bracket on sections of A satisfies the Jacobi
identity and that the correspondence π∗

Qsi 7→ hQ(π
∗

Qsi ) is a Lie algebra homomorphism. Similarly, the Jacobiator of
arbitrary sections of Q is also zero due to fact that hQ actually induces a homomorphism on all sections of π∗

Q A. �
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Remark 2.10. Using hK instead of hQ in the construction of the previous lemma leads to a Lie algebroid structure
on π∗

K A → K . As Kirill Mackenzie pointed out to us, π∗

K A is just the transformation algebroid arising from the Lie
algebroid action of A on K given by the flat connection D̃. Similarly, the Lie algebroid structure on π∗

Q A that we
constructed in the lemma is the transformation algebroid structure coming from hQ , which is viewed here as a Lie
algebroid action of A on Q.

Now we come back to our original setting, where we consider the Lie algebroid L over P and a Hermitian
L-connection D on the line bundle K over P . Consider Lc, the Jacobi–Dirac structure on P naturally associated
with L . There is a canonical isomorphism Lc

→ L ⊕Υ R, (X, 0)⊕ (ξ, g) 7→ (X, ξ, g) of Lie algebroids over P [8].
Lemma 2.8 provides us with a flat L ⊕Υ R-connection D̃ on K , and by Lemma 2.9 the pullback of L ⊕Υ R to Q
(the circle bundle associated with K ) is endowed with a Lie algebroid structure. Using Eq. (6) one sees that its anchor
hQ : π∗

Q(L ⊕Υ R) → T Q, at any point of Q, is given by

hQ(X, ξ, g) = X H
+ (〈X ⊕ ξ, β〉 − g)E (7)

(here we make immaterial choices to write D as in Eq. (5) and denote by H the horizontal lift w.r.t. ker σ ). This
formula for the anchor suggests how to identify π∗

Q(L ⊕Υ R) with a subbundle of E1(Q): we will show that the
natural injection

I : π∗

Q(L ⊕Υ R) → L̄ ⊂ E1(Q), I (X, ξ, g) = (hQ(X, ξ, g), 0)⊕ (π∗ξ, g)

is a Lie algebroid morphism, whose image is a codimension 1 subalgebroid of L̄ which we denote by L̄0. We regard L̄0
as a “lift” of L (or rather Lc) obtained using the Hermitian L-connection D. Now we can describe the Jacobi–Dirac
structure L̄ prequantizing L in invariant terms and characterize partially (see also Remark 2.14) its Lie algebroid
structure:

Theorem 2.11. Assume that the Dirac manifold (P, L) satisfies the prequantization condition (3). Fix the line bundle
K over P associated with [Ω ] and a Hermitian L-connection D on K with curvature 2π iΥ . Denote as above by
L̄0 the lift of Lc by the connection D. Then L̄, the subbundle defined in Theorem 2.4, is characterized as the unique
Jacobi–Dirac structure on Q which contains L̄0 and which is different from (π?L)c (where π?L denotes the pullback
Dirac structure of L). Further L̄0 is canonically isomorphic to π∗

Q(L ⊕Υ R) as a Lie algebroid.

Proof. We first show that I : π∗

Q(L ⊕Υ R) → L̄ is indeed a Lie algebroid morphism. We compute for S1 invariant
sections

[I (X1, ξ1, 0), I (X2, ξ2, 0)]E1(Q) = I ([(X1, ξ1), (X2, ξ2)]Cou, 0)+ 〈(X1, ξ1), (X2, ξ2)〉− ((−E, 0)⊕ (0, 1))

= I ([(X1, ξ1, 0), (X2, ξ2, 0)]π∗
Q(L ⊕Υ R)) (8)

and [I (X, ξ, 0), I (0, 0, 1)]E1(Q) = 0; then one checks that I respects the anchor maps of π∗

Q(L ⊕Υ R) and L̄ .
To prove the above characterization of L̄ we show that there are exactly two maximally isotropic subbundles

of E1(Q) containing L̄0. Indeed, denoting by (L̄0)
⊥ the orthogonal of L̄0 w.r.t. the pairing 〈•, •〉+, the quotient

(L̄0)
⊥/L̄0 is a rank 2 vector bundle over Q which inherits a non-degenerate symmetric pairing on its fibers. Every

fiber of such a bundle is isomorphic to R2 with pairing 〈(a, b), (a′, b′)〉 =
1
2 (ab′

+ ba′), which clearly contains
exactly two isotropic subspaces of rank 1 (namely R(1, 0) and R(0, 1)). So there are at most two maximally isotropic
subbundles of E1(Q) containing L̄0; indeed there are exactly two: L̄ and L̄0 ⊕ R((0, 0) ⊕ (0, 1)). The latter is
π?L = {Y ⊕ π∗ξ : π∗(Y )⊕ ξ ∈ L} viewed as a Jacobi–Dirac structure on Q, hence we are done. �

Remark 2.12. Using the canonical identifications of Lie algebroids L ⊕Υ R ∼= Lc and π∗

Q(L ⊕Υ R) ∼= L̄0 the natural
Lie algebroid morphism π∗

Q(L ⊕Υ R) → L ⊕Υ R is

Φ : L̄0 → Lc, (X, 0)⊕ (π∗ξ, g) 7→ (π∗ X, 0)⊕ (ξ, g). (9)

Remark 2.13. The construction of Theorem 2.11 gives a quick way to see that the subbundle L̄ of E1(Q), as defined
in Theorem 2.4, is indeed closed under the extended Courant bracket: L̄0 is closed since we realized it as a Lie
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algebroid, and the sum with the span of the section (−AH , 1) ⊕ (σ − π∗α, 0) is closed under the bracket because
〈[s1, s2]E1(Q), s3〉+ (for si sections of E1(Q)) is a totally skew-symmetric tensor [13].

Remark 2.14. The characterization of L̄0 as the transformation algebroid of some action of L ⊕Υ R ∼= Lc on
Q (Theorem 2.11) shows that if the Lie algebroid Lc is integrable then L̄0 is integrated by the corresponding
transformation groupoid. Unfortunately using Theorem 2.11 we are not able to draw the same conclusion for L̄ .
Looking at the brackets on L̄ is not very illuminating: it is determined by (8) and

[I (X, ξ, 0), (−AH , 1)⊕ (σ − π∗α, 0)]E1(Q) = I (−[(X, ξ), (A, α)]Cou, 0)

+ I (0,Ω(X)− ξ +
1
2

d〈X ⊕ ξ, β〉, 0)− 〈A, ξ〉 ((−E, 0)⊕ (0, 1)) . (10)

The remaining brackets between sections of the form I (X, ξ, 0), I (0, 0, 1) and (−AH , 1)⊕ (σ −π∗α, 0) vanish, and
by the Leibniz rule these brackets determine the bracket for arbitrary sections of L̄ .

Remark 2.15. Different choices of L-connection on the line bundle K with curvature 2π iΥ usually lead to Lie
algebroids L̄ with different foliations (see Remark 2.7), which therefore cannot be isomorphic. However the
subalgebroids L̄0 are always isomorphic. Indeed any two connections with the same curvature are of the form D
and D′

= D + 2π iγ , where γ is a closed section of L∗ (see Prop. 6.1 in [25]). A computation using dLγ = 0 shows
that (X, ξ)⊕ g 7→ (X, ξ)⊕ (g −〈(X, ξ), γ 〉) is a Lie algebroid automorphism of L ⊕Υ R. Further this automorphism
intertwines the Lie algebroid actions (7) of L ⊕Υ R on Q given by the “horizontal lifts” of the flat connections D̃
and D̃′. Hence the transformation algebroids of the two actions are isomorphic, as is clear from the description of
Lemma 2.9.

We exemplify the fact that actions coming from different flat connections are intertwined by a Lie algebroid
automorphism (something that cannot occur if the anchor of the Lie algebroid is injective) in the simple case when
the Dirac structure on P comes from a close 2-form ω: the Lie algebroid action of T P ⊕ω R on Q via a connection ∇

(with curvature 2π iω) is intertwined to the obvious action of the Atiyah algebroid T Q/S1 on Q (essentially given by
the identity map) via T P ⊕ω R ∼= T Q/S1 is (X, g) 7→ X H

− π∗gE , where σ is the connection on the circle bundle
Q corresponding to ∇.

2.3. Describing L̄ via the bracket on functions

In this subsection we will describe the geometric structure L̄ on the circle bundle Q in terms of the bracket on the
admissible functions on Q; by Remark 2.17 below the bracket on functions uniquely determines L̄ .

We adopt the following notation. FS denotes the function on Q associated with a section S of the line bundle K : FS
is just the restriction to the bundle of unit vectors Q of the fiberwise linear function on K given by 〈·, S〉, where 〈·, ·〉

is the S1-invariant real inner product on K corresponding to the chosen Hermitian form on K . Alternatively FS can be
described as the real part of the S1-antiequivariant function on Q that naturally corresponds to the section S. By i S we
denote the image of the section S under the action of i ∈ S1 (i.e. S rotated by 90◦), and f and g are functions on P .

Proposition 2.16. Assume that the Dirac manifold (P, L) satisfies the prequantization condition (3). Fix the line
bundle K over P associated with [Ω ] and a Hermitian L-connection D on K with curvature 2π iΥ . Denote by D̃ the
flat connection induced as in Lemma 2.8 and by hQ : π∗

Q(L ⊕Υ R) → T Q the horizontal lift associated with D̃ given
by Eq. (7).

Suppose a Jacobi–Dirac structure L̂ on Q has the following two properties: first, near to any q ∈ Q such that
T P ∩ L is regular near π(q), the admissible functions for L̂ are exactly those that are constant along the leaves of
{hQ(X, 0, 0) : X ∈ T P ∩ L}. Second, the bracket on locally defined admissible functions is given by

• {π∗ f, π∗g}Q = π∗
{ f, g}P .

• {π∗ f, FS}Q = F
−D̃X f ,d f, f S .

• {π∗ f, 1}Q = 0.
• {FS, 1}Q = −2πFi S .

Then L̂ must be the Jacobi–Dirac structure L̄ given in Theorem 2.4.
Conversely, the Jacobi–Dirac structure L̄ given in Theorem 2.4 has the two properties above.
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Proof. We start by showing that the Jacobi–Dirac structure L̄ constructed in Theorem 2.4 satisfies the above two prop-
erties. On the set of points where the “characteristic distribution” C := L̄ ∩ (T Q × R)⊕ (0, 0) of any Jacobi–Dirac
structure has constant rank the admissible functions are exactly the functions f such that (d f, f ) annihilate C . In our
case C = {X H

+ 〈α, X〉E : X ∈ L ∩ T P} = {hQ(X, 0, 0) : X ∈ T P ∩ L} is actually contained in T Q, so the
admissible functions are those constant on the leaves of C as claimed.

Now we check that the four formulae for the bracket hold. The first equation follows from the fact that the push-
forward of L̄ is the Jacobi–Dirac structure associated with L (see Section 5 in [25]).

For the second equation we make use of the formulae

E(FS) = −2πFi S and X H (FS) = F∇X S,

where we make some choice to express D as in Eq. (5) and X H denotes to horizontal lift of X ∈ T P using the
connection on Q corresponding to the covariant derivative ∇ on K . Using these formulae we see that

{π∗ f, FS}Q = −〈dFS, X H
f + 〈(X f , d f ), β〉E − f E〉

= F−∇X f S+2π i(〈(X f ,d f ),β〉)− f

= F
−D̃X f ,d f, f S .

For the last two equations just notice that, since (−E, 0) ⊕ (0, 1) is a section of L̄ , the bracket of any admissible
function with the constant function 1 amounts to applying −E to that function.

Now we show that if a Jacobi–Dirac structure L̂ satisfies the two properties in the statement of the proposition,
then it must be L̄ . By Remark 2.17, the brackets of dim Q − rkC + 1 independent functions at regular points of
C := L̂ ∩ (T Q × R) ⊕ (0, 0) determine L̂ , so we have to show that our two properties carry the information of the
bracket of dim Q − rkC + 1 independent functions at regular points of C .

It will be enough to consider the open dense subset of the regular points of C where C = {hQ(X, 0, 0) : X ∈

T P ∩ L} (this subset is dense because it includes the points q such that C is regular near q and T P ∩ L is regular
near π(q)). Since there C is actually contained in T Q it is clear that 1 and π∗ f are admissible functions, for f any
admissible function on P (this means that f is constant along the leaves of L ∩ T P; there are dim P − rkC such
f which are linearly independent at π(q)). Further we can construct an admissible function FS as follows: take a
submanifold Y near π(q) which is transverse to the foliation given by L ∩ T P , and define the section S|Y so that it
has norm 1 (i.e. its image lies in Q ⊂ K ). Then extend S to a neighborhood of π(q) by starting at a point y of Y and
“following” the leaf of C through S(y) (notice that C is a flat partial connection on Q → P covering the distribution
L ∩ T P on P). Since C is S1 invariant, the resulting function FS is clearly constant along the leaves of C , and hence
admissible. Altogether we obtain dim Q − rkC + 1 admissible functions in a neighborhood of q for which we know
the brackets, so we are done. �

Remark 2.17. On any Jacobi–Dirac manifold (Q, L̂) the bracket on the sheaf of admissible functions (C∞

adm(Q),
{·, ·}) determines the subbundle L̂ of E1(Q). (This might seem a bit surprising at first, since the set of admissible
functions is usually much smaller than C∞(Q).)

The set of points where C := L̂ ∩ (T Q × R) ⊕ (0, 0) (an analog of a “characteristic distribution”) has locally
constant rank is an open dense subset of Q, since C is an intersection of subbundles. Hence by continuity it is enough
to reconstruct the subbundle L̄ on each point q of this open dense set.

Since we assume that C has constant rank near q , given C∞

adm(Q) in a neighborhood of q we can reconstruct C as
the distribution annihilated by (d f, f )where f ranges over C∞

adm(Q). We can clearly find dim Q−rkC +1 admissible
functions fi such that {(d fi , fi )} forms a basis of ρT ∗ Q×R(L̂) = C◦ near q. The fact that each fi is an admissible
function means that there exist (X i , φi ) such that (X i , φi ) ⊕ (d fi , fi ) is a smooth section of L̂ . Now knowing the
bracket of any f j with the other fi ’s, i.e. the pairing of (X j , φ j ) with all elements of ρT ∗ Q×R(L̂), does not quite
determine (X j , φ j ). However it determines (X j , φ j ) up to sections of C ; hence the direct sum of the span of all
(X i , φi )⊕ (d fi , fi ) and of C is a well defined subbundle of E1(Q). Moreover it has the same dimension as L̂ and it
is spanned by sections of L̂ , so it is L̂ .
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3. Prequantization and reduction of Jacobi–Dirac structures

In the last section we considered a prequantizable Dirac manifold (P, L) and endowed Q (the total space of the
circle bundle over P) with distinguished Jacobi–Dirac structures L̄ .

We are interested in the relation between the Lie algebroid structures on L̄ and Lc (the Jacobi–Dirac structure
canonically associated with L), because it will give an indication of the relation between the Lie groupoids integrating
them. The map Φ of (9) is a natural surjective morphism of Lie algebroids from the codimension 1 subalgebroid L̄0
of L̄ to Lc, so one may hope to extend Φ to a Lie algebroid morphism defined on L̄ . However in general there cannot
be any Lie algebroid morphism from L̄ to Lc or L with base map π : recall that a morphism of Lie algebroids maps
each orbit of the source Lie algebroid into an orbit of the target Lie algebroid. If the map π : Q → P induced a
morphism of Lie algebroids, then the orbits1 of L̄ would be mapped into the orbits of Lc (which coincide with those
of L). However this happens exactly when (one and hence all choices of) the vector field A appearing in Theorem 2.4
is tangent to the foliation of L (see Section 4.1 of [25]). In the case of Example 4.13, i.e. Q = S1

× R and P = R,
the orbits of T ∗Q × R are exactly three (namely S1

× R+, S1
× {0} and S1

× R−), and π does not map them into the
orbits of T ∗ P , which are just points.

In this section we will take advantage of the fact that L̄ , in addition to the Lie algebroid structure, also carries a
geometric structure, namely a precontact structure θL̄ ∈ Ω1(L̄) defined as follows:

θL̄ := pr∗(θc + dt), (11)

where θc is the canonical 1-form on the cotangent bundle T ∗Q, t is the coordinate on R, and pr is the projection
of L̄ ⊂ E1(Q) onto T ∗Q × R. We will use the 1-form θL̄ to recover the Lie algebroid Lc from L̄ via a precontact
reduction procedure, which we will globalize to the corresponding Lie groupoids in the next section.

3.1. Reduction of Jacobi–Dirac structures as precontact reduction

We recall a familiar fact: in symplectic geometry, we have the well known motivating example of symplectic
reduction T ∗M/ /0 G = T ∗(M/G), where T ∗M/ /0 G is the Marsden–Weinstein reduction at zero for the cotangent
lift of an action of G on M . In [9], it is extended to contact geometry by replacing T ∗M by the cosphere bundle of
M . Here we prove a similar result by replacing T ∗M by T ∗M × R—another natural contact manifold associated with
any manifold M . Later on we will use this to reduce a G-invariant Jacobi–Dirac structure on M to a Jacobi–Dirac
structure on M/G.

Let a Lie group G act on a contact manifold (C, θ) preserving the contact form θ .
Then, a moment map is a map J from the manifold M to g∗ (the dual of the Lie algebra) such that for all v in the

Lie algebra g,

〈J, v〉 = θM (vM ), (12)

where vM is the infinitesimal generator of the action on M given by v. The moment map J is automatically equivariant
with respect to the coadjoint action of G on g∗ given by ξ · g = L∗

g R∗

g−1ξ . A group action as above together with its
moment map is called Hamiltonian. Notice that any group action preserving the contact form is Hamiltonian. In the
above setting there are two ways to perform contact reduction, developed by Albert [1] and Willett [26] respectively,
which agree when one performs reduction at 0 ∈ g∗:

C/ /0 G := J−1(0)/G

is again a smooth contact manifold with induced contact form θ̄ such that π∗(θ̄) = θ |J−1(0).

Lemma 3.1. Let the group G act on manifold M freely and properly. Then G has an induced action on the contact
manifold (C := T ∗M ×R, θ := θc +dt) where θc is the canonical 1-form on T ∗M and t is the coordinate on R. Then
this action is Hamiltonian and the contact reduction at 0 is

T ∗M × R/ /0 G = T ∗(M/G)× R.

1 The orbits of a Lie algebroid are the leaves integrating the (singular) distribution given by the image of the anchor map.
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Proof. The induced G action on T ∗M ×R is by g · (ξ, t) = ((g−1)∗ξ, t), and it preserves the 1-form θc +dt . The pro-
jection of this action on M is the G action on M so it is also free and proper. Then the moment map J is determined by

〈J (ξ, t), v〉 = (θc + dt)(ξ,t)(vC ) = θc(vC ) = 〈ξ, vM 〉,

where vC (resp. vM ) denotes the vector field corresponding to the infinitesimal action of G on the manifold C
(resp. M). Since all infinitesimal generators vC are nowhere proportional to the Reeb vector field ∂

∂t , by Remark
3.2 in [26] all points of T ∗M ×R are regular points of J . So J−1(0) = {(ξ, t) : 〈ξ, vM 〉 = 0 ∀v ∈ g} = {(π∗µ, t) : µ

∈ T ∗(M/G)} (with π : M → (M/G)) is a smooth manifold. Therefore it is not hard to see that there is a well defined

Φ : J−1(0)/G → T ∗(M/G)× R, ([ξ ], t) 7→ (µ, t),

where µ is uniquely determined by π∗µ = ξ and we used the notation [·] to denote the quotient of points (and later
tangent vectors) of J−1(0) by the G action. It is not hard to see that Φ is an isomorphism since the two sides have
the same dimension and Φ is obviously surjective. The contact form on T ∗(M/G)× R corresponding to the reduced
contact form θ̄ via the isomorphism Φ is the canonical one: for a tangent vector ([v], λ ∂

∂t ) ∈ T[ξ ],t (J−1(0)/G),

θ̄[ξ ],t

(
[v], λ

∂

∂t

)
= θξ,t

(
v, λ

∂

∂t

)
= ξ(p∗v)+ λ = µ( p̄∗Φ∗[v])+ λ,

where p : T ∗M → M and p̄ : T ∗(M/G) → M/G. Here we used p̄∗Φ∗[v] = π∗ p∗v, which follows from the fact
that Φ is a vector bundle map, and we abuse notation by denoting with the same symbol a restriction of Φ. �

This result extends to the precontact situation: instead of the contact manifold T ∗M×R we consider a Jacobi–Dirac
subbundle L̄ ⊂ E1(M), which together with the 1-form θL̄ ∈ Ω1(L̄) defined in (11) is a precontact manifold.

Proposition 3.2. When (Q, L̄) is a Jacobi–Dirac manifold, L̄ is a precontact manifold as described above. If the
group G acts freely and properly on Q preserving the Jacobi–Dirac structure, the action lifts to a free proper
Hamiltonian action on L̄ with moment map J ,

〈J ((X, f )⊕ (ξ, g)), v〉 = θL̄ |(X, f )⊕(ξ,g)(vL̄) = ξ(vQ).

Write gQ as a short form for {vQ : v ∈ g} ⊂ T Q, and let π? L̄ ⊂ E1(P) be the pushforward of L̄ via π : Q
→ P := Q/G. Then

(1) J−1(0) is a subalgebroid of L̄ iff L̄ ∩ (gQ, 0)⊕ (0, 0) has constant rank, and in that case L̄/ /0 G := J−1(0)/G
has an induced Lie algebroid structure.

(2) J−1(0)/G ∼= π? L̄ both as Lie algebroids and precontact manifolds, iff L̄ ∩ (gQ, 0) ⊕ (0, 0) = {0}. Here the
precontact forms are the reduced 1-form on J−1(0)/G and the one defined as in Eq. (11) on π? L̄ respectively.

Proof. The G action on Q lifts to L̄ by g · (X, f )⊕ (ξ, g) = (g∗ X, f )⊕ ((g−1)∗ξ, g), and the resulting moment map
J is clearly as claimed in the statement.

To prove (1) we start with some linear algebra and fix x ∈ Q. We have a map π∗ : Tx Q → Tπ(x)(Q/G); hence we
can push forward L̄x to

(π? L̄)π(x) = {(π∗ X, f )⊕ (µ, g) : (X, f )⊕ (π∗µ, g) ∈ L̄x }

to obtain a linear Jacobi–Dirac subspace of E1(Q/G)π(x). Since L̄ is G invariant, doing this at every x ∈ Q we obtain
a well defined subbundle of E1(Q/G), which however might fail to be smooth.2 We have a surjective map

Φ : J−1(0) = {(X, f )⊕ (ξ, g) ∈ L̄ : ξ = π∗µ for some µ ∈ Tπ(x)(Q/G)} → π? L̄

(X, f )⊕ (ξ, g) 7→ (π∗ X, f )⊕ (µ, g)
(13)

whose kernel is exactly J−1(0)∩(gQ, 0)⊕(0, 0) (notice that the map is well defined for π is a submersion). So J−1(0)
has constant rank iff J−1(0)∩ (gQ, 0)⊕ (0, 0) = L̄ ∩ (gQ, 0)⊕ (0, 0) does. In this case it is easy to see that J−1(0) is
closed under the Courant bracket: the Courant bracket of two sections of J−1(0) lie in L̄ (because L̄ is closed under

2 For example it is not smooth when G = R, Q = R2, vQ =
∂
∂x and L̄ is the graph of the 1-form y2

2 dx .
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the bracket); therefore one just has to show that its cotangent component is annihilated by gQ . By a straightforward
computation this is true for G-invariant sections, and by the Leibniz rule it follows for all sections of J−1(0),
i.e. J−1(0) is a subalgebroid. Clearly J−1(0)/G becomes a Lie algebroid with the bracket induced from the one
on J−1(0) and anchor ([X ], f )⊕ ([ξ ], g) 7→ π∗ X (where [·] denotes the equivalence relation given by the G action).

To prove (2) consider the map Φ above. It induces an isomorphism of vector bundles over P between J−1(0)/G
and π? L̄ iff it is fiberwise injective, i.e. iff L̄ ∩ (gQ, 0)⊕ (0, 0) = {0}. Since J−1(0)/G (being a precontact reduction)
is a smooth manifold and J−1(0)/G ∼= π? L̄ is pointwise a subbundle of E1(P), it follows that π? L̄ is a smooth vector
bundle over P . We are left with showing that Φ induces an isomorphism of Lie algebroids and precontact manifolds.
Using the fact that operations appearing in the definition of Courant bracket such as taking Lie derivatives commute
with taking quotient of G (for example π∗(Lπ∗ Xµ) = L Xπ

∗µ) we deduce that Φ : J−1(0) → π? L̄ is a surjective
morphism of Lie algebroids, and hence the induced map Φ : J−1(0)/G → π? L̄ is an isomorphism of Lie algebroids.

The isomorphism of precontact manifolds follows from an argument entirely similar to that in Lemma 3.1. We
consider a tangent vector ([w], κ ∂

∂s ) ⊕ ([v], λ ∂
∂t ) ∈ T([X ], f )⊕([ξ ],g)(J−1(0)/G); then Φ(([X ], f ) ⊕ ([ξ ], g)) =

(π∗ X, f )⊕ (µ, g), where π∗µ = ξ . So the induced 1-form θ̄ on J−1(0)/G satisfies

θ̄[X ], f,[ξ ],g

(
[w], κ

∂

∂s

)
⊕

(
[v], λ

∂

∂t

)
= θX, f,ξ,g

(
w, κ

∂

∂t

)
⊕

(
v, λ

∂

∂t

)
= ξ(p∗v)+ λ = µ( p̄∗Φ∗[v])+ λ,

where p : L̄ → Q and p̄ : π? L̄ → P are projections. Therefore θ̄ = Φ∗θπ? L̄ with θπ? L̄ the canonical 1-form as
in (11). �

Remark 3.3. A special case of Proposition 3.2 is the usual reduction of basic 1-forms: if the Jacobi–Dirac structure L̄
of Proposition 3.2 comes from 1-form σ on Q such that gQ ⊂ ker σ , then the pushforward π? L̄ is given by the unique
1-form σred on P = Q/G satisfying π∗σred = σ .

3.2. Reduction of prequantizing Jacobi–Dirac structures

Now we adapt the general theory of reduction of Jacobi–Dirac manifolds discussed in the previous subsection to
our situation, namely we consider a prequantization Q of Dirac manifold (P, L). Then Q is Jacobi–Dirac with a free
and proper S1 action which preserves the Jacobi–Dirac structure L̄ . Let Lc

= {(X, 0)⊕ (ξ, g) : (X, ξ) ∈ L , g ∈ R}

denote the Jacobi–Dirac structure associated with the Dirac manifold (P, L). Then Lc naturally has a precontact form
as described in (11). The algebroids L̄ , Lc and L fit into the following diagram (where we denote dimensions and
ranks by superscripts):

L̄n+2

��

(Lc)n+1 //

��

Ln

{{xxxxxxxxx

Qn+1 π // Pn

The left two Lie algebroids in the diagram are related by the reduction described in the next proposition:

Proposition 3.4. When (Q, L̄) is a prequantization of Dirac manifold (P, L) we have J−1(0) = L̄0 (recall that L̄0
was defined at the end of Section 2.2) and the isomorphisms of precontact manifolds and Lie algebroids,

L̄/ /0 S1 ∼= Lc.

Proof. The equality is clear from the characterization of J−1(0) in Eq. (13) and from the definition of L̄0. For the
isomorphism notice that Lc

= π? L̄ (this is equivalent to saying that π is a forward Jacobi–Dirac map) and apply
Proposition 3.2 (which holds because the assumption L̄ ∩ (gq , 0) ⊕ (0, 0) = {0} is satisfied, as is clear from the
definition of L̄ in Theorem 2.4). �

In the rest of this subsection we want to see what Proposition 3.4 says about the objects that integrate the Lie
algebroids L̄ and Lc. We first recall a few definitions.

Definition 3.5. A Lie groupoid over a manifold P is a manifold Γ endowed with surjective submersions s, t (called
source and target) to the base manifold P , a smooth associative multiplication m defined on elements g, h ∈ Γ
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satisfying s(g) = t(h), an embedding of P into Γ as the spaces of “identities” and a smooth inversion map Γ → Γ
satisfying certain compatibility conditions (see for example [16]).

Every Lie algebroid Γ has an associated Lie algebroid, whose total space is ker(s∗|P ) ⊂ TΓ |P , with a bracket on
sections defined using right invariant vector fields on Γ and t∗|P as anchor. A Lie algebroid A is said to be integrable
if there exists a Lie groupoid whose associated Lie algebroid is isomorphic to A; in this case there is a unique (up to
isomorphism) source simply connected (s.s.c.) Lie groupoid integrating A.

The following two definitions are adapted from [3,17] respectively to match up the conventions of [8,27].

Definition 3.6. A presymplectic groupoid is a Lie groupoid Γ over a manifold P , with dim Γ = 2 dim P , equipped
with a closed 2-form ΩΓ satisfying

m∗ΩΓ = pr∗

1 ΩΓ + pr∗

2 ΩΓ

and the non-degeneracy condition

ker t∗ ∩ ker s∗ ∩ ker ΩΓ = {0}.

By [3] the Dirac structure on Γ given by the graph of Ω pushes down via s to a Dirac structure L on the base P
which, as a Lie algebroid, is isomorphic to the Lie algebroid of Γ . Conversely, if (P, L) is any Dirac manifold, then L
(if integrable) integrates to a s.s.c. presymplectic groupoid as above. The latter is unique (up to presymplectic groupoid
automorphism), and will be denoted by Γs(P) in this paper.

Hence presymplectic groupoids are the objects integrating Dirac structures. The objects integrating Jacobi–Dirac
structures are the following:

Definition 3.7. A precontact groupoid is a Lie groupoid Γ over a manifold Q, dim Γ = 2 dim Q + 1, equipped with
a 1-form θΓ and a function fΓ satisfying fΓ (gh) = fΓ (g) fΓ (h) and

m∗θΓ = pr∗

1 θΓ pr∗

2 fΓ + pr∗

2 θΓ ,

and the non-degeneracy condition

ker t∗ ∩ ker s∗ ∩ ker θΓ ∩ ker dθΓ = {0}.

The 1-form θΓ , viewed as a Jacobi–Dirac structure on Γ , pushes forward via the source map to a Jacobi–Dirac
structure on M which is isomorphic to the Lie algebroid of Γ . (The formula for a canonical isomorphism is given in
Appendix A.) Conversely, if (Q, L̄) is any Jacobi–Dirac manifold, then L̄ (if integrable) integrates to a s.s.c. unique
precontact groupoid as above, which will be denoted by Γs(P) in this paper. Notice that a Dirac manifold (P, L), in
addition to the presymplectic groupoid Γs(P) associated as above, also has an associated precontact groupoid Γc(P)
integrating the Jacobi–Dirac structure Lc corresponding to L .

When the presymplectic groupoid Γs(P) is prequantizable its prequantization circle bundle can be viewed as
an “alternative prequantization space” for (P, L), because Γs(P) is the global object that corresponds to the Dirac
manifold (P, L). We will see in items (4) and (5) of Theorem 4.11 that the prequantizability and integrability of
(P, L) imply that Γs(P) is prequantizable, and that the prequantization bundle Γ̃c(P) is a groupoid integrating Lc, so
A(Γ̃c(P)) ∼= Lc where “A” denotes the functor that takes the Lie algebroid of a Lie groupoid. (In the Poisson case
this follows from [8,2].)

There is a canonical Lie algebroid isomorphism between ker s∗|P ⊂ T Γ̃c(P)|P and Lc, given by Lemma A.1. It
matches the restriction to ker s∗|P of the 1-form on Γ̃c(P) and the precontact form θLC on Lc (see Eq. (11)) at points
of P (notice that at points of the zero section P the precontact form on Lc is just pr∗dt , i.e. the projection onto the last
component). Similarly the canonical isomorphism between ker s∗|Q (where here s denotes the source map of Γc(Q))
and L̄ matches the restriction of the 1-form on Γc(Q) and θL̄ . Hence the reduction of Proposition 3.4 matches the
1-forms on the groupoids Γc(Q) and Γ̃c(P) at points of the identity sections.

As we will see in the next section, there is an S1 action on the precontact groupoid (Γc(Q), θΓ , fΓ ) of (Q, L̄)
which is canonically induced by the S1 action on Q and which hence makes the source map equivariant and which
respects the 1-form and multiplicative function on the groupoid. The equivariance makes sure that taking derivatives
along the identity one gets an S1 action on ker s∗|Q by vector bundle isomorphism. Further, under the canonical
isomorphism (see Lemma A.1) ker s∗|Q ∼= L̄ , the S1 action is the natural one described at the beginning of the proof
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of Proposition 3.2, because the S1 action on Γc(Q) respects t,rΓ and θΓ . We conclude that the S1 action that we
considered in this subsection is the infinitesimal version of the S1 action on (Γc(Q), θΓ ). We summarize:

Proposition 3.8. The natural S1 action on Q lifts to an action on A(Γc(Q)) ∼= L̄, whose precontact reduction is
Lc ∼= A(Γ̃c(P)), endowed with the Lie algebroid and precontact structures given by the Lie groupoid Γ̃c(P).

In the next section we will show that the precontact reduction of Γc(Q) is isomorphic, both as precontact manifold
and a groupoid, to the s.s.c. precontact groupoid of P , and that Γ̃c(Q) is a discrete quotient of it. This means that
precontact reduction commutes with the Lie algebroid functor:

A(Γc(Q)/ /0 S1) = A(Γc(Q))/ /0 S1.

Further we also have a correspondence at the intermediate step of the reduction, namely for the zero level sets of the
moment maps (see item (3) of Theorem 4.9).

4. Prequantization and reduction of precontact groupoids

In this section we analyze the relation between the groupoids associated with (P, L) and (Q, L̄), leading to an
“integrated” version of Proposition 3.4 (i.e. to reduction of groupoids). In Section 4.1 we will perform the reduction
using finite dimensional arguments, restricting ourselves for simplicity to the case when P is a Poisson manifold. If
on one hand our finite dimensional proof might appeal more to geometric intuition, it will not allow us to conclude
whether the reduced groupoids that we obtain are source simply connected. In Section 4.2, for the general case when
P is a Dirac manifold, we will obtain a complete description of the reduction using path spaces. We will conclude
with two examples.

4.1. The Poisson case

In this subsection we show our results for the Poisson manifold without using the infinite dimensional path spaces.
We start by displaying a simple example, which was also a motivating example in [6].

Example 4.1. Let (P, ω) be a simply connected integral symplectic manifold, and (Q, θ) a prequantization. We have
the following diagram of groupoids:

(Q × Q × R,−e−sθ1 + θ2, e−s)

����

(Q ×S1 Q, [−θ1 + θ2])

����

// (P × P,−ω1 + ω2)

ttjjjjjjjjjjjjjjjjjjj

ttjjjjjjjjjjjjjjjjjjj

Q // P

The first groupoid is a (usually not s.s.c.) contact groupoid of (Q, θ), with coordinate s on the R factor. The second is a
contact groupoid of (P, ω) which is a prequantization of the third groupoid (the s.s.c. symplectic groupoid of (P, ω)).
The S1 action on Q induces a circle action on its contact groupoid with moment map given by 〈J, 1〉 = −e−s

+ 1, so
that its zero level set is obtained setting s = 0, and dividing by the circle action we obtain exactly the second groupoid
above, i.e. the prequantization of the s.s.c. groupoid of (P, ω).

Let P be a Poisson manifold, consider the Dirac structure L given by the graph of the Poisson bivector, and assume
that (P, L) is prequantizable and that it is integrable, in which case it integrates to a s.s.c symplectic3 groupoid
Γs(P). The prequantizability of (P, L) implies that the period group of any source fiber of Γs(P) is contained in Z
(see Section 3.3 of [2], or Theorem 4.2 below for a straightforward generalization). This last condition is equivalent
to saying that the symplectic groupoid Γs(P) is prequantizable in the sense of [6] (see Prop. 2 in [2] or Thm. 3
in [8]). Its unique prequantization will be denoted by Γ̃c(P) and turns out to be a (usually not s.s.c.) contact4 groupoid
of P , i.e. it integrates the Lie algebroid Lc. Fix a prequantization (Q, L̄) and assume that the Lie algebroid L̄ is

3 This means that the 2-form on the presymplectic groupoid integrating L is non-degenerate.
4 This means that the 1-form on the precontact groupoid satisfies θΓ ∧ (dθΓ )dim(P)

6= 0.
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integrable; denote by Γc(Q) the integrating s.s.c. contact groupoid. Now, “integrating” the reduction statements of the
last section, we will clarify the relation between Γc(Q) (the global object attached to the prequantization bundle Q)
and the prequantization of Γs(P) (which can be thought of as a different way to prequantize (P, L)).

The (smooth) groupoids that we consider fit into the following diagram; we omitted Γ̃c(P), which is just a
discrete quotient of the s.s.c. contact groupoid Γc(P). This diagram corresponds to the diagram of Lie algebroids
in Section 3.2, and again we denote dimensions by superscripts.

Γc(Q)2n+3

����

Γc(P)2n+1

����

// Γs(P)2n

xxrrrrrrrrrrr

xxrrrrrrrrrrr

Qn+1 π // Pn

Theorem 4.2. Let (P, L) be an integrable prequantizable Poisson manifold, and (Qn+1, L̄) one of its
prequantizations as in Section 2.1, which we assume to be integrable. Then:

(a) The s.s.c contact groupoid Γc(P) of (P, L) is obtained from the s.s.c. contact groupoid Γc(Q) of (Q, L̄) by S1

contact reduction.
(b) The prequantization of the s.s.c. symplectic groupoid Γs(P) is a discrete quotient of Γc(P).

Proof. S1 acts on Q, and it acts also on T Q ⊕ T ∗Q by the tangent and cotangent lifts. The S1 action preserves the
subbundle given by the Jacobi–Dirac structure L̄ , and hence we obtain an S1 action on the Lie algebroid L̄ → Q.
The source simply connected (s.s.c.) contact groupoid (Γc(Q), θΓ , fΓ ) of (Q, L̄) is constructed canonically from
the Lie algebroid L̄ via the path space construction [7], so it inherits an S1 action that preserves its geometric and
groupoid structures. In particular the source and target maps are S1 equivariant, and similarly the multiplication
map Γc(Q)s ×t Γc(Q) → Γc(Q). Also, the S1 action preserves the contact form, so there is a moment map
JΓ : Γc(Q) → R by JΓ (g) = θΓ (vΓ (g)) where vΓ denotes the infinitesimal generator of the S1 action. We divide
the proof into three steps.

Step 1: J−1
Γ (0) is a s.s.c. Lie subgroupoid of Γc(Q).

We start by showing that JΓ = 1 − fΓ ; this explicit5 formula will turn out to be necessary in Step 2.
To do this we will use several properties of contact groupoids, for which to refer the reader to Remark 2.2 in [27].

The identity JΓ + fΓ = 1 is clear along the identity section Q, since fΓ is a multiplicative function and vΓ is tangent
to Q which is a Legendrian submanifold of (Γc(Q), θΓ ). So to show that the statement holds at any point of Γc(Q) it
is enough to show that 〈d( fΓ + JΓ ), X fΓ t∗u〉 = 0 for functions u ∈ C∞(Q), since Hamiltonian vector fields X fΓ t∗u
span ker s∗. The statement follows by two computations: first

〈d fΓ , X fΓ t∗u〉 = 〈d fΓ , fΓ t∗uEΓ + ΛΓ d( fΓ t∗u)〉

= fΓ · 〈d fΓ ,ΛΓ d(t∗u)〉 = − fΓ · d(t∗u)X fΓ = fΓ · E(u), (14)

where we used twice EΓ ( fΓ ) = 0 and the fact that t is a − fΓ -Jacobi map. Second,

〈d(θΓ (vΓ )), X fΓ t∗u〉 = −dθΓ (vΓ , X fΓ t∗u) = 〈−d( fΓ t∗u), (vΓ − θΓ (vΓ )EΓ )〉 = − fΓ · E(u),

where we use the fact that LvΓ θΓ = 0 in the first equality, the formula dθΓ (Xφ, w) = −〈dφ,wH
〉 valid for any

function φ on a contact groupoid (where wH is the projection of the tangent vector w to ker θΓ along the Reeb vector
field EΓ ) in the second one, and in the last equality that EΓ ( fΓ ),vΓ ( fΓ ),t∗EΓ all vanish and that the S1 actions on
Γc(Q) and Q are intertwined by the target map t.

Since fΓ is multiplicative, it is clear that J−1
Γ (0) = f −1

Γ (1) is a subgroupoid.

5 The claim of Step 1 follows even without knowing the explicit formula for JΓ . Indeed one can show that J−1
Γ (0) is a subgroupoid by means of

the identity JΓ (gh) = f (h)JΓ (g)+ JΓ (h), which is derived using the multiplicativity of θΓ and the fact that vΓ is a multiplicative vector field
(i.e. vΓ (g) · vΓ (h) = vΓ (gh); this is just the infinitesimal version of the statement that the multiplication map is S1 equivariant). Since J−1

Γ (0) is
a smooth wide subgroupoid it is transverse to the s fibers near to the identity; therefore its source and target maps are submersions and hence it is
actually a Lie subgroupoid.
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Further J−1
Γ (0) is a smooth submanifold of Γc(Q): by Prop. 3.1.4 in [26] g ∈ Γc(Q) is a singular point of JΓ iff

vΓ (g) is a non-zero multiple of EΓ (g). Since θΓ (EΓ ) = 1 this is never the case if g ∈ J−1
Γ (0), so 0 is a regular value

of JΓ .
To show that J−1

Γ (0) is a Lie subgroupoid we still need to show that its source and target maps are submersions
onto Q. We do so by showing explicitly that (ker s∗ ∩ ker d fΓ ) (which along Q will be the Lie algebroid of J−1

Γ (0))
has rank one less than ker t∗; this is clear since by the first equation of Step 1 it is just {X fΓ t∗π∗v : v ∈ C∞(P)}.

For the proof of the source simple connectedness of the subgroupoid J−1
1 (0) we refer the reader to Theorem 4.9.

Step 2: The contact reduction J−1
Γ (0)/S1 is the s.s.c. contact groupoid Γc(P) of P .

J−1
Γ (0)/S1 is smooth because the S1 action is free and proper, and by contact reduction it is a contact manifold, so

we just have to show that the Lie groupoid structure descends and is a compatible one.
The S1 equivariance of the source and target maps of Γc(Q) ensure that source and target descend to maps

J−1
Γ (0)/S1

→ P (=Q/S1). Since the multiplication on Γc(Q) is S1 equivariant, the multiplication on J−1
Γ (0)

induces a multiplication on J−1
Γ (0)/S1. It is routine to check that this makes J−1

Γ (0)/S1 into a groupoid over P .
Further, since the source map intertwines the S1 action on J−1(0) and the free S1 action on the base Q, the source
fibers of J−1

Γ (0)/S1 will be diffeomorphic to the corresponding source fibers of J−1
Γ (0); hence we obtain a s.s.c. Lie

groupoid. Since J−1
Γ (0) → J−1

Γ (0)/S1 is a surjective submersion, the fΓ -twisted multiplicativity of θΓ implies that
the induced 1-form θ̂Γ is multiplicative, i.e. (J−1

Γ (0)/S1, θ̂Γ , f̂Γ ) is a contact groupoid.
In order to prove that the above contact groupoid corresponds to the original Poisson structure ΛP on P , we have

to show that the source map ŝ : J−1
Γ (0)/S1

→ P is a Jacobi map (i.e. a forward Jacobi–Dirac map). Consider the
diagram

J−1
Γ (0)

πJΓ
−−−−→ J−1

Γ (0)/S1

s
y ŝ

y
Q

π
−−−−→ P.

We adopt the following short-form notation: for a 1-form α, Lα will denote the Jacobi–Dirac structure associated with
α [22]. Then for the pullback Jacobi–Dirac structure we have i∗LθΓ = L i∗θΓ , where i is the inclusion of J−1

Γ (0) into
Γc(Q), and the reduced 1-form is recovered as πJΓ ∗

i∗LθΓ = L
θ̂Γ

. So by the functoriality of the pushforward, it is
enough to show that π∗s∗L i∗θΓ , which by definition is

{((π ◦ s)∗Y, f )⊕ (ξ, g) : (Y, f )⊕ ((π ◦ s)∗ξ, g) ∈ L i∗θΓ }, (15)

equals the Jacobi–Dirac structure given by ΛP . First we determine which tangent vectors Y to J−1
Γ (0) and f ∈ R

have the property that i∗(dθΓ (Y ) + f θΓ ) annihilates ker(π ◦ s)∗, which using Eq. (14) is equal to {X fΓ t∗π∗v : v ∈

C∞(P)}⊕RvΓ . A computation similar to those carried out in Step 1 and using the explicit formula J = 1− fΓ shows
that this is the case when f = 0 and π∗t∗Y = 0, which by a computation similar to (14) amounts to Y ∈ {Xs∗π∗v :

v ∈ C∞(P)} ⊕ RvΓ . These will be exactly the “Y ” and “ f ” appearing in (15); a short computation using the fact that
the source map of Γc(Q) and π are Jacobi maps shows that (15) equals {(−ΛPξ, 0)⊕ (ξ, g) : ξ ∈ T ∗ P, g ∈ R}, as
was to be shown.

Step 3: ((J−1
Γ (0)/S1)/Z, θ̂Γ ) is the prequantization of the s.s.c. symplectic groupoid Γs(P) of P . Here Z acts as a

subgroup of R by the flow of the Reeb vector field ÊΓ .
Consider the action on J−1

Γ (0)/S1 by its Reeb vector field ÊΓ , which by the contact reduction procedure is the
projection of the Reeb vector field EΓ of Γc(Q) under J−1

Γ (0) → J−1
Γ (0)/S1.

The t-image of a vΓ orbit is an orbit of the S1 action on Q, since the target map is S1 equivariant. Hence each
vΓ orbit meets each t-fiber at most once. Further each EΓ -orbit is contained in a single t-fiber (since t∗EΓ = 0),
so an EΓ orbit meets any orbit of the S1 action on Γc(Q) at most once. Therefore the periods of an EΓ orbit and
of the corresponding ĒΓ orbit are equal, and the first period is always an integer number (because s∗EΓ = EQ , the
generator of the circle action on Q).

Now the we know that the periods of ĒΓ are integers, we can just apply Theorems 2 and 3 of [8] to prove our
claim. �
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4.2. Path space constructions and the general Dirac case

In this subsection we generalize Theorem 4.2 allowing P to be a general Dirac manifold, using the explicit
description of Lie groupoids as quotients of path spaces as a powerful tool. The generalization will be presented
in Theorems 4.9 and 4.11.

Definition 4.3. Let π : A → M be a Lie algebroid with anchor ρ. The A-path space Pa(A) consists of all paths
a : [0, 1] → A satisfying d

dt (π ◦ a)(t) = ρ(a(t)).

There is an equivalence relation in Pa A, called A-homotopy [7].

Definition 4.4. Let a(t, s) be a family of A-paths which is C2 in s. Assume that the base paths γ (t, s) := π ◦ a(t, s)
have fixed end points. For a connection ∇ on A, consider the equation

∂t b − ∂sa = T∇(a, b), b(0, s) = 0. (16)

Here T∇ is the torsion of the connection defined by T∇(α, β) = ∇ρ(β)α − ∇ρ(α)β + [α, β]. Two paths a0 = a(0, ·)
and a1 = a(1, ·) are homotopic if the solution b(t, s) satisfies b(1, s) = 0.

More geometrically, for every Lie algebroid A (notice that tangent bundles are Lie algebroids), we associate with
A a simplicial set S(A) = [...S2(A) V S1(A) ⇒ S0(A)] with

Si (A) = homalgd(T∆i , A) := {Lie algebroid morphisms T∆i f
→ A}, (17)

and face and degeneracy maps dn
i : Sn(A) → Sn−1(A) and sn

i : Sn(A) → Sn+1(A) induced from the natural face and
degeneracy maps ∆n

→ ∆n−1 and ∆n
→ ∆n+1. Here ∆i is the i-dimensional standard simplex viewed as a smooth

Riemannian manifold with boundary; hence it is isomorphic to the i-dimensional closed ball. Then as explained in
[28, Section 2],

• it is easy to check that S0 = M ;
• S1 is exactly the A-path space Pa A;
• bigons in S2 are exactly the A-homotopies in Pa A since a bigon f : T (d2

2 )
−1(T s1

0(T∆0)) → A can be
written as a(t, s)dt + b(t, s)ds over the base map γ (t, s) after a suitable choice of parametrization6 of the disk
(d2

2 )
−1(s1

0(∆
0)). Then we naturally have b(0, s) = f (0, s)( ∂

∂s ) = 0 and b(1, s) = f (1, s)( ∂
∂s ) = 0. Moreover

the morphism is a Lie algebroid morphism if and only if a(t, s) and b(t, s) satisfy Eq. (16) which defines the
A-homotopy.

The s.s.c. groupoid of any integrable Lie algebroid A can be constructed as the quotient of the A-path space by a
foliation F , whose leaves consist of the A-paths that are A-homotopic to each other [7]. In particular the precontact
groupoid (Γc(Q), θ, f ) of a Jacobi–Dirac manifold Q can be constructed via the A-path space Pa(L̄), with θ and f
coming from a corresponding 1-form and function on the path space. We refer the reader to [8,6,17] and summarize
the results in Theorem 4.5 below. The advantage of this method is that it can be used to generalize Theorem 4.2 to
the setting of Dirac manifolds (see Theorems 4.9 and 4.11) and that it can be applied to a general group G action as
in [10].

Theorem 4.5. The s.s.c. precontact groupoid (Γc(Q), θΓ , fΓ ) of an integrable Jacobi–Dirac manifold (Q, L̄) is the
quotient space of the A-path space Pa(L̄) by A-homotopies, and θΓ and fΓ come from a 1-form θ̃ and a function f̃
on Pa(L̄). At the point a = (a4, a3, a1, a0) ∈ Pa(L̄), where (a4, a3, a1, a0) are components in T Q ⊕ R ⊕ T ∗Q ⊕ R,
θ̃ and f̃ are

θ̃a(X) = −

∫ 1

0

〈
e(t)X (t), d

(∫ 1

0
a0(t)dt

)〉
dt +

∫ 1

0

〈
e(t)X (t), pr∗θc

〉
dt,

f̃ (a) = e(1), with e(t) := e
∫ t

0 −a3

(18)

6 We need the one with γ (0, s) = x and γ (1, s) = y for all s ∈ [0, 1].
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where X is a tangent vector of Pa(L̄), and hence a path itself (parameterized by t), and pr∗θc is the pullback via
pr : L̄ → T ∗Q of the canonical 1-form on T ∗Q.

Proof. The equation for f̃ is taken from Prop. 3.5(i) of [8]. It is shown there that f̃ descends to the function fΓ
on Γc(Q). To get the formula for θ̃ , we recall from Section 3.4 of [8] that the following map φ is an isomorphism
preserving A-homotopies:

φ : Pa(L̄)× R → Pa(L̄ ×ψ R),

mapping (a, s) with base path γ1 to ã := eγ0(t)a with base path (γ1, γ0), where γ0 := s −
∫ t

0 a3. Here ψ is the 1-
cocycle on L̄ given by (X, f )⊕ (ξ, g) 7→ f ; L̄ ×ψ R is the Lie algebroid on Q × R obtained from the Lie algebroid
L̄ and the 1-cocycle ψ , and it is isomorphic to the Lie algebroid given by the Dirac structure on Q × R obtained from
the “Diracization” of (Q, L̄) (see Section 2.3 in [17]).

The correspondence on the level of tangent spaces given by Tφ maps (δγ1, δs, δa) to (δγ1, δγ0, δã) and satisfies

δγ0 = δs −

∫ t

0
a3,

δã1 = eγ0

(
δa1 +

(
δs −

∫ t

0
δa3

)
a1

)
,

δã0 = eγ0

(
δa0 +

(
δs −

∫ t

0
δa3

)
a0

)
.

We identify L̄ ×ψ R with the Dirac structure on Q × R given by the Diracization of (Q, L̄). Then on the whole space
P(L̄ ×ψ R) of paths in L̄ ×ψ R there is a symplectic form ω coming from integrating the pullback of the canonical
symplectic form on T ∗(Q × R) (see Section 5 in [3]). This form restricted to the A-path space Pa(L̄ ×ψ R) is homo-
geneous w.r.t. the R component, i.e. ϕsω = esω, where ϕs is the flow of ∂

∂s with s the coordinate of R. This is because
ϕs acts on vector fields δã1 and δã0 by rescaling by an es factor as the formula of Tφ and γ0 show. This homogeneity
survives the quotient to groupoids as shown in [8]. Therefore θΓ comes from the 1-form θ̃ whose associated homoge-
neous symplectic form is ω, i.e. θ̃ = −i∗0 i( ∂

∂s )ω. With a straightforward calculation and the formula of Tφ, we have
the formula for θ̃ in (18). �

Remark 4.6. The formula for θ̃ is a generalization of Theorem 4.2 in [6] in the case where L̄ comes from a Dirac
structure. To get the formula of the 1-form there up to sign,7 one just has to put e(t) = 1 which corresponds to the
case where a3 = 0.

In Lemma 2.9 we constructed a Lie algebroid structure on π∗ A, the pullback via π : Q → P of any Lie algebroid
A on P , provided that there is a flat A-connection D̃ on the vector bundle K corresponding to the principal bundle
Q. (π∗ A turned out to be the transformation algebroid w.r.t. the action by the flat connection.) Now we show some
functorial properties of algebroid paths in π∗ A. Later in this section we will apply them to A = Lc, for π∗Lc is
identified with a Lie subalgebroid of L̄ (Theorem 2.11), whose integrating groupoid we can describe in terms of
A-paths (Theorem 4.5).

Lemma 4.7. An A-path a in A can be lifted to an A-path in π∗ A. The same is true for A-homotopies. In other words,
in the following diagram (for n = 1, 2),

T∆n

))RRRRRRRRRRRRRRRR

��

f

##GGGGGGGG

∆n

f0

##FF
FF

FF
FF

F

((RRRRRRRRRRRRRRRRR π∗ A //

��

A

��
Q π // P

7 In [6] 1-forms on contact groupoids are so that the target map is a Jacobi map, whereas here we adopt the convention (as in [27]) that the source
map be Jacobi.
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any Lie algebroid morphism f : T∆n
→ A lifts to a Lie algebroid morphism from T∆n to π∗ A.

Proof. Let γ be the base path of an A-path a, and let γ̃ be the parallel translation along a of some γ̃ (0) ∈ π−1(γ (0))
as in the proof of Lemma 2.9. Denoting by π∗a the lift of a to π∗ A with base path γ̃ , we have ρ(π∗a) =

hQ(a(γ (t)), γ̃ (t)) = d/dt (γ̃ ), with ρ the anchor of π∗ A (see Eq. (6)). That is, π∗a is an A-path in π∗ A over γ̃ .
The lifting of a is not unique. In fact it is determined by the choice of a point in π−1(γ (0)) as initial value.

Now we prove the same statement for A-homotopies. Suppose a(ε, t) is an A-homotopy over γ (ε, t), i.e. there
exist A-paths (w.r.t. parameter ε) b(ε, t) also over γ satisfying

∂t b − ∂εa = ∇ρ(b)a − ∇ρ(a)b + [a, b], (19)

and the boundary condition b(ε, 0) = b(ε, 1) = 0, for any choice of connection ∇ on T P . As above, we can lift γ to
γ̃ (ε, t). In fact, once we choose γ̃ (0, 0), we can use γ̃ (0, 0) to obtain the lift γ̃ (ε, 0) and then γ̃ (ε, t). (The lift does
not depend on whether we lift γ (ε, 0) or γ (0, t) first, because the connection D̃ is flat.) Then π∗a and π∗b are A-paths
over γ̃ w.r.t. parameters t and ε respectively. Moreover, we choose a connection ∇̃ on Q induced from the connection
∇ on P such that ∇̃X H Y H

= (∇X Y )H , ∇̃X H E = 0, ∇̃E Y H
= 0 and ∇̃E E = 0, where the superscript H denotes the

horizontal lift with respect to some connection that we fix on the circle bundle π : Q → P . (Since E(π∗ f ) = 0 and
X H (π∗ f ) = X ( f ) these requirements are consistent. In fact, the connection ∇̃ on T Q = π∗T P ⊕ RE is just the
sum of the pullback connection on π∗T P and the trivial connection.) Now we will prove that π∗a and π∗b satisfy
(19) w.r.t. ∇̃. Notice that 〈π∗η, ∇̃E X〉 = 0 for all vector fields X , so we have

∇̃Eπ
∗η = 0, ∇̃

( ∂
∂ε
γ )Hπ

∗η = π∗(∇ ∂
∂ε
γ
η).

Therefore ∇̃ ∂
∂ε
γ̃
π∗η = π∗(∇ ∂

∂ε
γ
η). So ∂επ∗a = π∗(∂εa). The same is true for π∗b. Moreover, since ρ(π∗a) =

(ρ(a))H
+ 〈β̃, a〉E (upon writing D̃ as in Eq. (5) and denoting by H the horizontal lift w.r.t. ker σ ), similarly we have

∇̃ρ(π∗a)π
∗b = π∗(∇ρ(a)b) as well as the analog term obtained switching a and b. By the definition of the Lie bracket

on π∗ A, we also have [π∗a, π∗b] = π∗([a, b]). Therefore a, b satisfying (19) implies that the same equation holds
for π∗a and π∗b. The boundary condition π∗b(ε, 0) = π∗b(ε, 1) = 0 is obvious. Hence, π∗a is an A-homotopy in
π∗ A. �

Remark 4.8. We claim that all the A-paths and A-homotopies in π∗ A are of the form π∗a. Indeed consider a π∗ A
path â over a base path γ̂ , i.e. ρ(â(t)) =

d
dt γ̂ (t). Let γ := π ◦ γ̂ and let a(t) be equal to â(t), seen as an element of

Aγ (t). The commutativity of

π∗ A
hQ=ρ

−−−−→ T Qy π∗

y
A

ρA
−−−−→ T P

implies that a is an A-path over γ . Further, the horizontal lift of a starting at γ̂ (0) satisfies by definition d
dt γ̃ (t)

= hQ(a(γ (t)), γ̃ (t)), so it coincides with γ̂ . The same holds for A-homotopies.

The next theorem generalizes Theorem 4.2(a).

Theorem 4.9. Let (P, L) be an integrable prequantizable Dirac manifold and (Q, L̄) one of its prequantizations. We
use the notation [·]A to denote A-homotopy classes in the Lie algebroid A. Then we have the following results:

(1) There is an S1 action on the precontact groupoid Γc(Q) with moment map JΓ = 1 − fΓ .
(2) J−1

Γ (0) is a source connected and simply connected subgroupoid of Γc(Q) and is isomorphic to the action
groupoid Γc(P)n Q ⇒ Q.

(3) In terms of path spaces,

J−1
Γ (0) = {[π∗a]L̄} = {[π∗a]L̄0

},

where a is an A-path in Lc and π∗a is defined as in Lemma 4.7 (we identify π∗Lc with L̄0 ⊂ L̄ as in
Theorem 2.11). Hence the Lie algebroid of J−1

Γ (0) is L̄0 = J−1(0) (see Proposition 3.4).
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(4) The precontact reduction Γc(Q)/ /0 S1 is isomorphic to the s.s.c. contact groupoid Γc(P) via the inverse of the
following map:

p : [a]Lc 7→ [π∗a]L̄,S1 ,

where [·]L̄,S1 denotes S1 equivalence classes of [·]L̄ .

Remark 4.10. The isomorphism p gives the same contact groupoid structure on Γc(Q)/ /0 S1 as in Theorem 4.2 in
the case when P is Poisson.

Proof. (1) The definition of the S1 action is the same as in Theorem 4.2. JΓ is defined by JΓ (g) = θΓ (vΓ (g)), where
vΓ is induced by the S1 action on Q and hence on L̄ . More explicitly, T (Pa(L̄)) is a subspace of the space of paths in
T L̄ . If we take a connection ∇ on Q, then T L̄ decomposes as T Q ⊕ L̄ . At (a4, a3, a1, a0) ∈ Pa(L̄) the infinitesimal
S1 action ṽ on the path space is ṽ = (E(γ (t)), ∗, ∗, ∗, 0). So

JΓ ([a]) = θ̃a(ṽ) =

∫ 1

0
(〈a1(t), E〉e−

∫ t
0 〈a1,E〉dt )dt = −

∫ 1

0
d(e−

∫ t
0 〈a1,E〉dt ) = 1 − fΓ .

(2) By (1) J−1
Γ (0) = f −1

Γ (1). Since fΓ is multiplicative, it is clear that f −1
Γ (1) is a subgroupoid. Moreover using

Theorem 4.5 we see that f −1
Γ (1) is made up by paths a = (a4, a3, a1, a0) such that∫ 1

0
〈a1(t), E〉dt = 0. (20)

Notice that these are not exactly the same as A-paths in L̄0, which are the A-paths such that 〈a1(t), E〉 ≡ 0 for all
t ∈ [0, 1] (see Theorem 2.11).

Now we show that J−1
Γ (0) is source connected. Take g ∈ s−1(x), and choose an A-path a(t) representing g over a

base path γ (t) : I → Q. We will connect g to x within J−1
Γ (0)∩ s−1(x) in two steps: first we deform g to some other

point h which can be represented by an A-path in L̄0; then we “linearly shrink” h to x .
Suppose the vector bundle L̄ is trivial on a neighborhood U of the image of γ in Q. Choose a frame Y0, . . . , Ydim Q

for L̄|U , with the property that Y0 = (−AH , 1)⊕ (σ −π∗α, 0) (with σ , A and α as in Theorem 2.4) and that all other
Yi satisfy 〈a1, E〉 = 0. In this frame, a(t) =

∑dim Q
i=0 pi (t)Yi |γ (t) for some time-dependent coefficients pi (t). Define

the following section of L̄|U : Yt,ε = (1 − ε)p0(t)Y0 +
∑dim Q

i=1 pi (t)Yi . Define a deformation γ (ε, t) of γ (t) by

d
dt
γ (ε, t) = ρ(Yt,ε), γ (ε, 0) = x,

where ρ is the anchor of L̄ (one might have to extend U to make γ (ε, t) ∈ U for t ∈ [0, 1]). Let a(ε, t) := Yt,ε |γ (ε,t).
For each ε it is an A-path by construction, and a(0, t) = a(t). Using g ∈ J−1

Γ (0) (so that
∫

I p0(t)dt = 0) we have∫ 1

0
〈a1(ε, t), E〉dt =

∫ 1

0
〈(1 − ε)p0(t)Y0 +

dim Q∑
i=1

pi (t)Yi , (E, 0, 0, 0)〉−dt = (1 − ε)

∫
I

p0(t)dt = 0,

so [a(ε, ·)] lies in J−1
Γ (0). Notice that a(1, t) satisfies 〈a1(1, t), E〉 ≡ 0 for all t ; hence it is an A-path in L̄0. We use

the notation h := [a(1, t)] and define a continuous map pr : Pa(L̄|U ) → Pa(L̄0|U ) by a(t) 7→ a(1, t).
Then we can shrink a(1, t) linearly to the zero path, via aδ(1, t) := δa(1, δt) which is an A-path over γ (1, δt).

Taking equivalence classes we obtain a path from h to x , which moreover lies in J−1
Γ (0) because 〈a1(1, t), E〉 ≡ 0.

Now we show that J−1
Γ (0) is source simply connected. If there is a loop g(s) = [a(1, s, t)] in a source fiber of

J−1
Γ (0), then g(s) can shrink to x := s(g(s)) inside the big (s.s.c.!) groupoid Γc(Q) via g(ε, s) = [a(ε, s, t)]. We can

assume a(ε, s, t) = sa(ε, 1, st). This is easy to realize since we can simply take a(ε, s, t) = g(ε, st)−1d/dt (g(ε, st)).
Then the a(i, 1, ·)’s are A-paths in L̄0 for i = 0, 1. This is because both g(s) and x are paths in J−1

Γ (0) which implies∫ 1
0 sa(i, 1, st) = 0 for all s ∈ [0, 1]. Moreover the base paths γ (ε, s, t) form an embedded disk (one can assume that

the deformation g(ε, s) has no self-intersections) in Q. So we can take a simply connected open set (for example a
tubular neighborhood of this disk) U ⊂ Q containing γ (ε, s, t). Then L|U is trivial. Therefore there is a continuous
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map pr such that ā(ε, 1, ·) = pr(a(ε, 1, ·)) is an A-path in L̄0 and ā(1, 1, ·) = a(1, 1, ·). Then we can shrink
g(s) = ḡ(1, s) to x = ḡ(0, s) via

ḡ(ε, s) := [sā(ε, 1, st)],

which is inside of J−1
Γ (0) since 〈ā1(ε, 1, t), E〉 ≡ 0.

(3) To show that J−1
Γ (0) = {[π∗a]L̄}, we just have to show that an A-path in L̄ satisfying (20) is A-homotopic

(equivalent) to an A-path lying contained in L̄0. Since J−1
Γ (0) has connected source fibers, given a point g = [a]

in J−1
Γ (0), there is a path g(t) connecting g to s(g) lying in J−1

Γ (0). Differentiating g(t) we get an A-path
b(t) = g(t)−1ġ(t) which is A-homotopic to a and sb(st) represents the point g(st) ∈ J−1(0). Therefore∫ 1

0 〈sb1(st), E〉dt = 0, for all s ∈ [0, 1]. Hence 〈b1(t), E〉 ≡ 0 for all t ∈ [0, 1], i.e. b is a path in L̄0.
To further show that J−1

Γ (0) = {[π∗a]L̄0
}, we only have to show that if two A-paths in L̄0 are A-homotopic

in L̄ then they are also A-homotopic in L̄0. Let a(1, ·) and a(0, ·) be two A-paths in L̄0, A-homotopic in L̄
and representing an element g ∈ J−1

Γ (0). Integrate sa(i, st) to get g(i, t) for i = 0, 1. Namely we have
sa(i, st) = g(i, s)−1 d

dt |t=s g(i, t). Then g(i, t) are two paths connecting g and x := s(g) lying in the subgroupoid
J−1
Γ (0) since a(i, t) are paths in L̄0. Since the source fiber of J−1

Γ (0) is simply connected, there is a homotopy
g(ε, t) ∈ J−1

Γ (0) linking g(0, t) and g(1, t). So sa(ε, st) := g(ε, s)−1 d
dt |t=s g(ε, t) is an A-path in the variable t

representing the element g(ε, s) ∈ J−1
Γ (0) for every fixed s. Hence sa(ε, st) satisfies (20) for every s ∈ [0, 1].

Therefore 〈a1(ε, t), E〉 ≡ 0. Then a(ε, t) ⊂ L̄0 is an A-homotopy between a(0, t) and a(1, t).
Therefore J−1

Γ (0) is the s.s.c. Lie groupoid integrating J−1(0) = L̄0.
(4) First of all, given an A-path a of Lc over the base path γ and a point γ̃ (0) over γ (0) in Q, we lift it to an

A-path π∗a of L̄ as described in Lemma 4.7. By the same lemma, we see that (Lc) A-homotopic A-paths in Lc

lift to (L̄0) A-homotopic A-paths in π∗Lc ∼= L̄0 ⊂ L̄ , so the map p is well defined. Different choices of γ̃ (0) give
exactly the S1 orbit of (some choice of) [π∗a]L̄ . Surjectivity of the map p follows from the statement about A-paths in
Remark 4.8. Injectivity follows from the fact that {[π∗a]L̄} = {[π∗a]L̄0

} in (3) and the statement about A-homotopies
in Remark 4.8. �

We saw in Section 3.2 that, given any integrable Dirac manifold (P, L), there are two groupoids attached to it.
One is the presymplectic groupoid Γs(P) integrating L; the other is the precontact groupoid Γc(P) integrating Lc.
In the non-integrable case, these two groupoids still exist as stacky groupoids carrying the same geometric structures
(presymplectic and precontact) [19]. In this paper, to simplify the treatment, we view them as topological groupoids
carrying the same name and when the topological groupoids are smooth manifolds they have additional presymplectic
and precontact structures. Item (4) of the following theorem generalizes Theorem 4.2(b). The other items generalize
from the Poisson case to the Dirac case Theorems 2 and 3 in [8] and a result in [2].

Theorem 4.11. For a Dirac manifold (P, L), there is a short exact sequence of topological groupoids

1 → G → Γc(P)
τ

→Γs(P) → 1,

where G is the quotient of the trivial groupoid R × P by a group bundle P over P defined by

Px :=

{∫
[γ ]

ωF : [γ ] ∈ π2(F, x) and γ is the base of an A-homotopy between paths representing 1x in L .
}
,

with F the presymplectic leaf passing through x ∈ P and ωF the presymplectic form on F. In the case that (P, L) is
integrable as a Dirac manifold, then:

(1) The presymplectic form Ω on Γs(P) is related to the precontact form θ on Γc(P) by

τ ∗dθ = Ω ,

and the infinitesimal action R of R on Γc(P) via R × P → G satisfies

LRθ = 0, i(R)θ = 1.

(2) R is the left invariant vector field extending the section (0, 0)⊕ (0,−1) of Lc
⊂ E1(P) as in Corollary A.2.

(3) The group Px is generated by the periods of R.
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(4) Γs(P) is prequantizable iff P ⊂ P × Z; in this case its prequantization is Γc(P)/Z, where Z acts on Γc(P) as a
subgroup of R.

(5) If P is prequantizable as a Dirac manifold, then Γs(P) is prequantizable.

Proof. The proof of (1) and (4) is the same as in Section 4 of [8]. One only has to replace the Poisson bivector π by
Υ and the leafwise symplectic form of π by ωF . (3) is clear since R generates the R action and G = R/P .

For (2), we identify (0, 0)⊕ (0,−1) with a section of ker t∗ using Lemma A.1 and then extend it to a left invariant
vector field on J−1(0)/S1. Using Corollary A.2 we see that the resulting vector field is killed by s∗, t∗ and dθΓ and
that it pairs to 1 with θΓ , so by the “non-degeneracy” condition in Definition 3.7 it must be equal to R.

For (5), if P is prequantizable as a Dirac manifold, then Υ = ρ∗Ω + dLβ for some integral form Ω on P and
β ∈ Γ (L∗). Suppose f = adε + bdt is a Lie algebroid homomorphism from the tangent bundle T � of a square
[0, 1]×[0, 1] to L over the base map γ : � → P , i.e. a(ε, t) is an A-homotopy over γ via b(ε, t) as in (19). Denoting
by ωF the presymplectic form of the leaf F in which γ (�) lies, we have (see also Sect. 3.3 of [2])∫

γ

ωF =

∫
�
ωF

(
∂γ

∂t
,
∂γ

∂ε

)
=

∫
�

〈adε, bdt〉− =

∫
�

f ∗Υ

=

∫
�

f ∗(ρ∗Ω + dLβ) =

∫
�

f ∗(ρ∗Ω) =

∫
�
γ ∗ω =

∫
γ

ω ∈ Z

where we used Υ = ρ∗ωF in the second equation and f ∗dLβ = ddR( f ∗β) in the fifth. �

4.3. Two examples

We present two explicit examples for Theorems 4.2, 4.9 and 4.11.
The first one generalizes Example 4.1.

Example 4.12. Let (P, ω) be an integral symplectic manifold (not necessarily simply connected), and (Q, θ) a
prequantization. The s.s.c. contact groupoid of (Q, θ) is (Q̄ ×π1(Q) Q̄ × R,−e−sθ1 + θ2, e−s) where Q̄ denotes
the universal cover of Q. As in Example 4.1 the moment map is given by JΓ = −e−s

+ 1 and the reduced manifold
at zero is ((Q̄ ×π1(Q) Q̄)/S1, [−θ1 + θ2]), where π1(Q) acts diagonally and the diagonal S1 action is realized by
following the Reeb vector field on Q̄.

Notice that the Reeb vector field of (Q̄ ×π1(Q) Q̄)/S1 is the Reeb vector field of the second copy of Q̄. Dividing
Q̄ by Z ⊂ (Flow of Reeb v.f.) is the same as dividing by the π1(Q̃) action on Q̄, where Q̃ is the pullback of Q → P
via the universal covering P̃ → P . To see this use that π1(Q̃) is generated by any of its Reeb orbits (look at the long
exact sequence corresponding to S1

→ Q̃ → P̃), and that the Reeb vector field of Q̄ is obtained lifting the one on Q̃.
Also notice that π1(Q̃) embeds into π1(Q) (as the subgroup generated by the Reeb orbits of Q) and that the quotient
by the embedded image is isomorphic to π1(P), by the long exact sequence for S1

→ Q → P . So the quotient of
(Q̄ ×π1(Q) Q̄)/S1 by the π1(Q̃) action on the second factor is (Q̃ ×π1(P) Q̃)/S1 where we used Q̄/π1(Q̃) = Q̃ on
each factor. This groupoid, together with the induced 1-form [−θ1 + θ2], is clearly the prequantization of the s.s.c.
symplectic groupoid (P̃ ×π1(P) P̃,−ω1 + ω2) of (P, ω).

In the second example we consider a Lie algebra g. Its dual g∗ is endowed with a linear Poisson structure Λ, called
the Lie–Poisson structure, and the Euler vector field A satisfies Λ = −dΛ A where dΛ is the Poisson cohomology
differential. So the prequantization condition (3) for (g∗,Λ) is satisfied, with Ω = 0 and β = A. We display the
contact groupoid integrating the induced prequantization (Q, L̄) for the simple case that g be one dimensional; then
we show that (a discrete quotient of) the S1 contact reduction of this groupoid is the prequantization of the symplectic
groupoid of g∗.

Example 4.13. Let g = R be the one-dimensional Lie algebra. We claim that the prequantization Q = S1
× g∗ of g∗

as above has as a s.s.c. contact groupoid Γc(Q) the quotient of(
R5, xdε − et dθ1 + dθ2, et

)
(21)

by the diagonal Z action on the variables (θ1, θ2). Here the coordinates on the five factors of R5 are (θ1, t, ε, θ2, x).
The groupoid structure is the product of the following three groupoids: R × R = {(θ1, θ2)} the pair groupoid;
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R×R = {(t, x)} the action groupoid given by the flow of the vector field −x∂x on R, i.e. (t ′, e−t x)·(t, x) = (t ′+t, x);
and R = {ε} the group.

To see this, first determine the prequantization of (g∗,Λ): it is Q = S1
× R with Jacobi structure (E ∧ x∂x , E),

where E = ∂θ is the infinitesimal generator of the circle action and x∂x is just the Euler vector field on g∗ (see [4]).
This Jacobi manifold has two open leaves, and we first focus on one of them, say Q+ = S1

× R+. This is a locally
conformal symplectic leaf, with structure (dθ ∧

dx
x ,

dx
x ).

We determine the s.s.c contact groupoid Γc(Q+) of (Q+, dθ ∧
dx
x ,

dx
x ) applying Lemma B.1 (choosing g̃ = log x ,

so that e−g̃Ω̃ = d(x−1dθ) there). We obtain the quotient of(
Q̃+ × R × Q̃+, x2dε −

x2

x1
dθ1 + dθ2,

x2

x1

)
by the diagonal Z action on the variables (θ1, θ2). Here (θi , xi ) are the coordinates on the two copies of the universal
cover Q̃+

∼= R × R+ and ε is the coordinate on the R factor. The groupoid structure is given by the product of the
pair groupoid over Q̃+ and group R. This contact groupoid, and the one belonging to Q− = S1

× R−, will sit as
open contact subgroupoids in the contact groupoid of Q, and the question is how to “complete” the disjoint union of
Γc(Q+) and Γc(Q−) to obtain the contact groupoid of Q. A clue comes from the simplest case of groupoid with two
open orbits and a closed one to separate them, namely the transformation groupoid of a vector field on R with exactly
one zero. The transformation groupoid associated with −x∂x is R × R = {(t, x)} with source given by x , target given
by e−t x and multiplication (t ′, e−t x) · (t, x) = (t ′ + t, x). Notice that, on each of the two open orbits R+ and R− the
groupoid is isomorphic to a pair groupoid by the correspondence (t, x) ∈ R × R± 7→ (e−t x, x) ∈ R± × R±, with
inverse (x1, x2) 7→ (log( x2

x1
), x2).

Now we embed Γc(Q+) into the groupoid Γc(Q) described in (21) by the mapping

(θ1, x1, ε, θ2, x2) 7→

(
θ1, t = log

(
x2

x1

)
, ε, θ2, x = x2

)
,

and similarly for Γc(Q−). The contact forms and function translate to those indicated in (21), which as a consequence
also satisfy the multiplicativity condition. One checks directly that the 1-form is a contact form also on the complement
{x = 0} of the two open subgroupoids. Therefore the one described in (21) is a contact groupoid, and since we know
that the source map is a Jacobi map on the open dense set sitting over Q+ and Q−, it is the contact groupoid of
(Q, E ∧ x∂x , E).

Now we consider the S1 contact reduction of the above s.s.c. groupoid Γc(Q). As shown in the proof of
Theorem 4.2 the moment map is JΓ = 1 − fΓ = 1 − et , so its zero level set is {t = 0}. The definition of moment
map and the fact that the infinitesimal generator vΓ of the S1 action projects to E both via source and via target imply
that on {t = 0} we have vΓ = (∂θ1 , 0, 0, ∂θ2 , 0). So J−1(0)/S1 is R3 with coordinates (θ := θ2 − θ1, ε, x), 1-form
dθ+xdε, source and target both given by x and groupoid multiplication given by addition in the θ and ε factors. Upon
division of the θ factor by Z (notice that the Reeb vector field of Γc(Q) is ∂θ2 ) this is clearly just the prequantization
of T ∗R, endowed with the canonical symplectic form dx ∧ dε and fiber addition as groupoid multiplication, i.e. the
prequantization of the symplectic groupoid of the Poisson manifold (R, 0).
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Appendix A. Lie algebroids of precontact groupoids

Lemma A.1. Let (Γ , θΓ , fΓ ) be a precontact groupoid (as in Definition 3.7) over the Jacobi–Dirac manifold (Q, L̄),
so that the source map is a Jacobi–Dirac map. Then a Lie algebroid isomorphism between ker s∗|Q and L̄ is given by
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Y 7→ (t∗Y,−rΓ ∗Y )⊕ (−dθΓ (Y )|T Q, θΓ (Y )) (22)

where e−rΓ = fΓ . A Lie algebroid isomorphism between ker t∗|Q and L̄ (obtained composing the above with i∗ for i
the inversion) is

Y 7→ (s∗Y, rΓ ∗Y )⊕ (dθΓ (Y )|T Q,−θΓ (Y )). (23)

Proof. Consider the groupoid Γ × R over Q × R with target map t̃(g, t) = (t(g), t − rΓ (g)) and the obvious source
s̃ and multiplication. (Γ × R, d(etθΓ )) is then a presymplectic groupoid with the property that s̃ is a forward Dirac
map onto (Q × R, L̃), where

L̃(q,t) = {(X, f )⊕ et (ξ, g) : (X, f )⊕ (ξ, g) ∈ Lq}

is the “Diracization” ([25,17]) of the Jacobi–Dirac structure L̄ and t is the coordinate on R. In the special case that L̄
corresponds to a Jacobi structure this is just Prop. 2.7 of [8]; in the general case (but assuming different conventions
for the multiplicativity of θΓ and for which of the source and target is a Jacobi–Dirac map) this is Prop. 3.3 in [17].
We will prove only the first isomorphism above (the one for ker s∗|Q); the other one follows by composing the first
isomorphism with i∗. Now we consider the following diagram of spaces of sections (in the left column we have
sections over Q, in the right column sections over Q × R):

Γ (ker s∗|Q)
Φs

−−−−→ Γ (ker s̃∗|Q×R)y Φ
y

Γ (L̄)
ΦL

−−−−→ L̃.

The first horizontal arrow Φs is Y 7→ Ỹ , where the latter denotes the constant extension of Y along the R direction of
the base Q × R. Notice that the projection pr : Γ × R → Γ is a groupoid morphism, so it induces a surjective Lie al-
gebroid morphism pr∗ : ker s̃∗|Q×R → ker s∗|Q . Since sections Ỹ as above are projectable, by Prop. 4.3.8. in [15] we
have pr∗[Ỹ1, Ỹ2] = [Y1, Y2], and since pr∗ is a fiberwise isomorphism we deduce that Φs is a bracket-preserving map.

The vertical arrow Φ is induced from the following isomorphism of Lie algebroids (Cor. 4.8 iii of [3]8) valid for
any presymplectic manifold (Γ̃ ,Ω) over a Dirac manifold (N , L̃) for which the source map is Dirac:

ker s̃∗|N → L̃, Z 7→ (t̃∗Z ,−Ω(Z)|T N ).

In our case, as mentioned above, the presymplectic form is d(etθΓ ).
The second horizontal arrow ΦL is the natural map

(X, f )⊕ (ξ, g) ∈ Lq 7→ (X, f )⊕ et (ξ, g) ∈ L̄(q,t)

which preserves the Lie algebroid bracket (see the remarks after Definition 3.2 of [25]).
One can check that (Φ ◦ Φs)(Y ) = (t̃∗Ỹ ) ⊕ (−d(etθΓ )(Ỹ )|T Q×R) lies in the image of the injective map ΦL . The

resulting map from Γ (ker s∗) to Γ (L̄) is given by Eq. (22) and the arguments above show that this map preserves
brackets. Further it is clear that this map of sections is induced by a vector bundle morphism given by the same for-
mula, which clearly preserves not only the bracket of sections but also the anchor, so that the map ker s∗|Q → L̄ given
by Eq. (22) is a Lie algebroid morphism.

To show that it is an isomorphism one can argue noticing that ker s∗ and L̄ have the same dimension and show
that the vector bundle map is injective, by using the “non-degeneracy condition” in Definition 3.7 and the fact that the
source and target fibers of Γ × R are presymplectic orthogonal to each other. �

The vector bundle morphisms in the above lemma give a characterization of vectors tangent to the s or t fibers
of a precontact groupoid as follows. Consider for instance a vector λ in L̄x , where L̄ is the Jacobi–Dirac structure
on the base Q. This vector corresponds to some Yx ∈ ker t∗ by the isomorphism (23), and by left translation we
obtain a vector field Y tangent to t−1(x). Of course, every vector tangent of t−1(x) arises in this way for a unique λ.

8 In [3] the authors adopted the convention that the target map is a Dirac map. Here we use their result applied to the presymplectic form −Ω .
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The vector field Y satisfies the following equations at every point g of t−1(x), which follow by simple computation
from the multiplicativity of θΓ : θΓ (Yg) = θΓ (Yx ), dθΓ (Yg, Z) = dθΓ (Yx , s∗Z) − rΓ ∗Yx · θΓ (Z) for all Z ∈ TgΓ ,
rΓ ∗Yg = rΓ ∗Yx and s∗Yg = s∗Yx . Notice that the right hand sides of these properties can be expressed in terms of
the four components of λ ∈ E1(Q), and that by the “non-degeneracy” of θΓ these properties are enough to uniquely
determine Yg . We sum up this discussion into the following corollary, which can be used as a tool in computations
on precontact groupoids in the same way that Hamiltonian vector fields are used on contact or symplectic groupoids
(such as the proof of Theorem 4.2):

Corollary A.2. Let (Γ , θΓ , fΓ ) be a precontact groupoid (as in Definition 3.7) and denote by L̄ the Jacobi–Dirac
structure on the base Q so that the source map is Jacobi–Dirac. Then there is bijection between sections of L̄ and
vector fields on Γ which are tangent to the t-fibers and are left invariant. To a section (X, f )⊕ (ξ, g) of L̄ ⊂ E1(Q)
corresponds the unique vector field Y tangent to the t-fibers which satisfies

• θΓ (Y ) = −g.
• dθΓ (Y ) = s∗ξ − f θΓ .
• s∗Y = X.

Y furthermore satisfies rΓ ∗Y = f .

Appendix B. Groupoids of locally conformal symplectic manifolds

A locally conformal symplectic (l.c.s.) manifold is a manifold (Q,Ω , ω) where Ω is a non-degenerate 2-form and
ω is a closed 1-form satisfying dΩ = ω ∧ Ω . Any Jacobi manifold is foliated by contact and l.c.s. leaves (see for
example [27]); in particular a l.c.s. manifold is a Jacobi manifold, and hence, when it is integrable, it has an associated
s.s.c. contact groupoid. In this appendix we will construct explicitly this groupoid; we make use of it in Example 4.13.

Lemma B.1. Let (Q,Ω , ω) be a locally conformal symplectic manifold. Consider the pullback structure on the
universal cover (Q̃, Ω̃ , ω̃), and write ω̃ = dg̃. Then Q is integrable as a Jacobi manifold iff the symplectic form
e−g̃Ω̃ is a multiple of an integer form. In that case, choosing g̃ so that e−g̃Ω̃ is integer, the s.s.c. contact groupoid of
(Q,Ω , ω) is the quotient of(

R̃ ×R R̃, es̃∗ g̃(−σ̃1 + σ̃2),
es̃∗ g̃

et̃∗ g̃

)
, (24)

a groupoid over Q̃, by a natural π1(Q) action. Here (R̃, σ̃ ) is the universal cover (with the pullback 1-form) of a
prequantization (R, σ ) of (Q̃, e−g̃Ω̃), and the group R acts by the diagonal lift of the S1 action on R.

Proof. Using for example the Lie algebroid integrability criteria of [7], one sees that (Q,Ω , ω) is integrable as a
Jacobi manifold iff (Q̃, Ω̃ , ω̃) is. Lemma 1.5 in Appendix I of [27] states that, given a contact groupoid, multiplying
the contact form by s∗u and the multiplicative function by s∗u

t∗u gives another contact groupoid, for any non-vanishing
function u on the base. Such an operation corresponds to twisting the groupoid, viewed just as a Jacobi manifold, by
the function s∗u−1; hence the Jacobi structure induced on the base by the requirement that the source be a Jacobi map
is the twist of the original one by u−1. So (Q̃, Ω̃ , ω̃) is integrable iff the symplectic manifold (Q̃, e−g̃Ω̃) is Jacobi
integrable, and by Section 7 of [8] this happens exactly when the class of e−g̃Ω̃ is a multiple of an integer one.

Choose g̃ so that this class is actually integer. A contact groupoid of (Q̃, e−g̃Ω̃) is clearly (R ×S1 R, [−σ1+σ2], 1),
where the S1 action on R×R is diagonal and “[ ]” denotes the form descending from R×R. This groupoid is not s.s.c.;
the s.s.c. one is R̃ ×R R̃, where the R action on R̃ is the lift of the S1 action on R. The source simple connectedness
follows since R acts transitively (even though not necessarily freely) on each fiber of the map R̃ → Q̃, and this in
turn holds because any S1 orbit in R generates π1(R) and because the fundamental group of a space always acts (by
lifting loops) transitively on the fibers of its universal cover.

By the above cited Lemma from [27] we conclude that (24) is the s.s.c. contact groupoid of (Q̃, Ω̃ , ω̃). The
fundamental group of Q acts on Q̃ respecting its geometric structure, so it acts on its Lie algebroid T ∗ Q̃ × R. Since
the path space construction of the s.s.c. groupoid is canonical (see Section 4.2), π1(Q) acts on the s.s.c. groupoid (24)
preserving the groupoid and geometric structure. Hence the quotient is a s.s.c. contact groupoid over (Q,Ω , ω), and
its source map is a Jacobi map, so it is the s.s.c. contact groupoid of (Q,Ω , ω). �
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Appendix C. On a construction of Vorobjev

In Section 2 we derived the geometric structure on the circle bundles Q from a prequantizable Dirac manifold
(P, L) and a suitable choice of connection D. In this appendix we describe an alternative attempt; even though we
can make our construction work only if we start with a symplectic manifold, we believe the construction is interesting
in its own right.

First we recall Vorobjev’s construction in Section 4 of [21], which the author there uses to study the linearization
problem of Poisson manifolds near a symplectic leaf. Consider a transitive algebroid A over a base P with anchor
ρ; the kernel ker ρ is a bundle of Lie algebras. Choose a splitting γ : T P → A of the anchor. Its curvature Rγ is a
2-form on P with values in Γ (ker ρ) (given by Rγ (v,w) = [γ v, γw]A−γ [v,w]). The splitting γ also induces a (TP-)
covariant derivative ∇ on ker ρ by ∇vs = [γ v, s]A. Now, if P is endowed with a symplectic form ω, a neighborhood
of the zero section in (ker ρ)∗ inherits a Poisson structure Λvert+Λhor as follows (Theorem 4.1 in [21]): denoting by Fs
the fiberwise linear function on (ker ρ)∗ obtained by contraction with the section s of ker ρ, the Poisson bivector has
a vertical component determined by Λvert(dFs1 , dFs2) = F[s1,s2]. It also has a component Λhor which is tangent to the
Ehresmann connection Hor given by the dual connection9 of ∇ on the bundle (ker ρ)∗; Λhor at e ∈ (ker ρ)∗ is obtained
by restricting the non-degenerate form ω − 〈Rγ , e〉 to Hore and inverting it. (Here we are identifying Hore and the
corresponding tangent space of P .)

To apply Vorobjev’s construction in our setting, let (P, ω) be a prequantizable symplectic manifold and (K ,∇K ) its
prequantization line bundle with Hermitian connection of curvature 2π iω. By Lemma 2.8 we obtain a flat T P ⊕ω R-
connection D̃(X, f ) = ∇X + 2π i f on K . Now we make use of the following well known fact about extensions, which
can be proven by direct computation:

Lemma C.1. Let A be a Lie algebroid over M, V a vector bundle over M, and D̃ a flat A-connection on V . Then
A ⊕ V becomes a Lie algebroid with the anchor of A as anchor and bracket

[(Y1, S1), (Y2, S2)] = ([Y1, Y2]A, D̃Y1 S2 − D̃Y2 S1).

Therefore A := T P ⊕ω R ⊕ K is a transitive Lie algebroid over P , with isotropy bundle ker ρ = R ⊕ K and
bracket [( f1, S1), ( f2, S2)] = [0, 2π i( f1S2 − f2S1)] there. Now choosing the canonical splitting γ of the anchor
T M ⊕ω R ⊕ K → T M we see that its curvature is Rγ (X1, X2) = (0, ω(X1, X2), 0). The horizontal distribution on
the dual of the isotropy bundle is the product of the trivial one on R and the one corresponding to ∇K on K (upon
identification of K and K ∗ by the metric). By the above, there is a Poisson structure on R ⊕ K , at least near the
zero section: the Poisson bivector at (t, q) has a horizontal component given by lifting the inverse of (1 − t)ω and a
vertical component which turns out to be 2π(iq∂q) ∧ ∂t , where “iq∂q” denotes the vector field tangent to the circle
bundles in K obtained by turning by 90◦ the Euler vector field q∂q . A symplectic leaf is clearly given by {t < 1} × Q
(where Q = {|q| = 1}). On this leaf the symplectic structure is seen to be given by (1 − t)ω + θ ∧ dt = d((1 − t)θ),
where θ is the connection 1-form on Q corresponding to the connection ∇K on K (which by definition satisfies
dθ = π∗ω). This means that the leaf is just the symplectification (R+ × Q, d(rθ)) of (Q, θ) (here r = 1 − t), which
is a “prequantization space” for our symplectic manifold (P, ω). Unfortunately we are not able to modify Vorobjev’s
construction appropriately when P is a Poisson or Dirac manifold.

References
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1988, pp. 141–193.
[19] H.-H. Tseng, C. Zhu, Integrating Lie algebroids via stacks, Compos. Math. 142 (1) (2006) 251–270.
[20] I. Vaisman, On the geometric quantization of Poisson manifolds, J. Math. Phys. 32 (12) (1991) 3339–3345.
[21] Y. Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf, in: Lie Algebroids and Related Topics in Differential

Geometry (Warsaw, 2000), in: Banach Center Publ., vol. 54, Polish Acad. Sci., Warsaw, 2001, pp. 249–274.
[22] A. Wade, Conformal Dirac structures, Lett. Math. Phys. 53 (4) (2000) 331–348.
[23] A. Weinstein, Noncommutative geometry and geometric quantization, in: Symplectic Geometry and Mathematical Physics (Aix-en-Provence,
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